In present study, sodium salt of α-naphthalene acetic acid (NA), potassium salt of fulvic acid (KF) and their combinations were applied to the growth substrates of tomato seedlings (Solanum lycopersicum L.) under chilling stress. The changes in aboveground biomass, root attributes, pigment contents, chlorophyll fluorescence, photosynthesis, osmotic regulation substances, and antioxidant enzymes activity of the tomato seedlings in response to NA and KF were investigated. The application of NA, KF and their combination could promote the growth of plant height and stem diameter of tomato seedlings under chilling stress to varying degrees, and improve root characteristics by increasing root volume, root length and root activity, and increase dry matter accumulation. In addition, the combined use of NA and KF improved the seedling leaf chlorophyll content, qP, Fv/Fm, ΦPSII , Pn and increased the activity of antioxidant enzymes in the tomato plants. The above results suggested a synergistic effect between NA and KF to stimulate the seedlings growth and to enhance the ROS scavenging ability of tomato, which has never been reported in previous research before. However, further researches are needed to explore the physiological and molecular mechanism underlying the synergistic effect between NA and KF.
The purpose of this study is to determine the effect of light quality on growth, carbon and nitrogen metabolism, and antioxidant defense system of rice seedlings. Six light conditions were employed, including white (W), red (R), blue (B), combined LED of R and B at 3:1 (R3B1), combined LED of R and B at 1:1 (R1B1), as well as combined LED of R and B at 1:3 (R1B3). Combined application of red light and blue light could promote the growth of rice seedling leaves and roots under low light stress to varying degrees, increase the photosynthetic area by increasing the leaf area, improve the root characteristics by increasing the root volume, and increase the dry matter accumulation of rice seedlings. In addition, the combination of red light and blue light could increase carbon and nitrogen metabolites in rice seedling leaves, regulate the expression of genes related to carbon and nitrogen metabolism and enzyme activity, and enhance the antioxidant enzyme activity of rice seedlings. These results indicate that red light and blue light directly have synergistic effects which can regulate the carbon and nitrogen metabolism of rice seedlings, promote the morphogenesis of rice seedlings under low light stress, and promote growth, which has never been reported in previous studies. This study is a new discovery in the application of light quality in crop production and provides new avenues to enhance crop stress resistance. However, further study is needed to explore the physio-biochemical and molecular mechanisms of light quality in crop production.
Hippeastrum vittatum (L'H er.) Herb. is a perennial herb in the Amaryllidaceae, which has been used as a medicinal and ornamental plant. Here, we assembled and characterized the complete chloroplast (cp) genome of H. vittatum by high throughput sequencing. As a result, the length of the complete cp genome is 158,082 bp with a canonical quadripartite structure, consists of a large single-copy region (LSC) of 86,165 bp, a small single-copy region (SSC) of 18,283 bp, and two inverted repeat (IR) regions of 26,817 bp, each. A total of 137 genes were identified, including 87 protein-coding genes, 42 tRNA genes, and 8 rRNA genes. The phylogenomic analysis was performed based on the complete cp genomes of 30 species, which revealed the closest relationship between H. vittatum and H. rutilum in the genus Hippeastrum.
The purpose of this study is to determine the effects of red and blue lights on the photomorphogenesis and photosynthetic traits of rice seedlings. The rice seedlings were cultured with red light (R), blue light (B), combined red and blue lights (R3B1/R1B1/R3B1), and white light (CK) as the control. The combined application of red and blue lights could promote the growth of rice seedlings to varying degrees; enhance photosynthesis by increasing the seedling leaf area, chlorophyll content, and chlorophyll fluorescence; improve root characteristics by increasing root number, root volume, and root activity; and thus increase the dry matter accumulation of rice seedlings. In addition, the combination of red and blue lights could regulate the expression of genes related to photosynthesis in rice leaves, affect the activity of the Rubisco enzyme, and then affect the photosynthesis of rice seedlings. These results indicate that red and blue lights have direct synergistic effects, which can regulate the growth of rice seedlings and promote the morphogenesis of rice seedlings. The combined application of red and blue lights can be used to supplement the light in rice-factory seedling raising.
The development of varieties with strong tolerance is one of the important strategies to diminish the negative impact of chilling stress during heading on the spikelet fertility and yield formation of late-season rice. However, whether such genetic improvement has been made in inbred late rice lines in China is not clear. In the present study, three late-season inbred rice varieties, Xiangwanxian2 (XWX2, released in 1988), Xiangwanxian8 (XWX8, released in 1998) and Xiangwanxian17 (XWX17, released in 2008) were subjected to moderate (20 °C) and extreme (17 °C) chilling stress during heading, and the grain yield components and flowering-related traits of the three varieties in response to different temperature were investigated. The results showed that the newly released inbred late rice variety XWX17, demonstrated better chilling tolerance during heading than the early released varieties with respect to higher grain filling percentage. The improved grain filling percentage in XWX17 might be the results of increased spikelet fertility, which was attributed to the increase in pollen viability, anther dehiscence length and anther volume. In addition, the SPAD value and the chlorophyll a content of the flag leaf can be used as indicators to predict the rice spikelet fertility when suffering from chilling stress during heading. The present study provides evidence that the genetic approach has been made to improve the chilling tolerance of inbred late rice lines during heading; however, further research is needed to explore the physiological and molecular mechanism underlying the relationship between leaf characteristics and function with rice spikelet fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.