To conduct empirical research on industry software development, it is necessary to obtain data of real software projects from industry. However, only few such industry data sets are publicly available; and unfortunately, most of them are very old. In addition, most of today's software companies cannot make their data open, because software development involves many stakeholders, and thus, its data confidentiality must be strongly preserved. To that end, this study proposes a method for artificially generating a "mimic" software project data set, whose characteristics (such as average, standard deviation and correlation coefficients) are very similar to a given confidential data set. Instead of using the original (confidential) data set, researchers are expected to use the mimic data set to produce similar results as the original data set. The proposed method uses the Box-Muller transform for generating normally distributed random numbers; and exponential transformation and number reordering for data mimicry. To evaluate the efficacy of the proposed method, effort estimation is considered as potential application domain for employing mimic data. Estimation models are built from 8 reference data sets and their concerning mimic data. Our experiments confirmed that models built from mimic data sets show similar effort estimation performance as the models built from original data sets, which indicate the capability of the proposed method in generating representative samples.
Software data sets derived from actual software products and their development processes are widely used for project planning, management, quality assurance and process improvement, etc. Although it is demonstrated that certain data sets are not fit for these purposes, the data quality of data sets is often not assessed before using them. The principal reason for this is that there are not many metrics quantifying fitness of software development data. In that respect, this study makes an effort to fill in the void in literature by devising a new and efficient assessment method of data quality. To that end, we start as a reference from Case Inconsistency Level (CIL), which counts the number of inconsistent project pairs in a data set to evaluate its consistency. Based on a follow-up evaluation with a large sample set, we depict that CIL is not effective in evaluating the quality of certain data sets. By studying the problems associated with CIL and eliminating them, we propose an improved metric called Similar Case Inconsistency Level (SCIL). Our empirical evaluation with 54 data samples derived from six large project data sets show that SCIL can distinguish between consistent and inconsistent data sets, and that prediction models for software development effort and productivity built from consistent data sets achieve indeed a relatively higher accuracy.INDEX TERMS Data quality metric, data inconsistency, software project data analysis, software effort estimation, software productivity estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.