BackgroundThe potential human health risks from graphene inhalation exposure have attracted substantial scientific interest as a result of the numerous exciting potential commercial applications of graphene. However, the long-term distribution of graphene in organisms after inhalation is unknown, largely as a result of challenges associated with accurate graphene quantification.MethodsCarbon-14 labeled FLG was used to quantify the in vivo distribution of FLG in mice after oral gavage or intratracheal instillation for up to 3 or 28 days after exposure, respectively.ResultsIntratracheally instilled FLG was mainly retained in the lung with 47 % remaining after 4 weeks. Exposure to non-labeled FLG resulted in dose-dependent acute lung injury and pulmonary edema, but these effects were alleviated with time despite the continued presence of FLG in the lungs. One percent and 0.18 % of the intratracheally instilled FLG was present in the liver and spleen, respectively, after 14 days by passing through the air-blood barrier, a finding supported by the results of oral gavage experiments which did not show detectable absorption through the gastrointestinal tract. In addition, 46.2 % of the intratracheally instilled FLG was excreted through the feces 28 d after exposure.ConclusionsQuantitative measurements revealed the elimination mechanism for FLG and its biodistribution for two exposure pathways. Graphene persistence in the lung only caused transient pulmonary effects. The in vivo distribution, elimination, and toxicity results provided here measured using a robust quantitative method support the human health risk assessment of graphene.Electronic supplementary materialThe online version of this article (doi:10.1186/s12989-016-0120-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.