The aim of the present study was to determine the role of hydrogen sulfide (H2S) in improving myocardial fibrosis and its effects on oxidative stress, endoplasmic reticulum (ER) stress and cell apoptosis in diabetic rats, by regulating the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. A total of 40 male Sprague-Dawley rats were randomly divided into four groups (n=10) as follows: Normal (control group), diabetes mellitus [streptozotocin (STZ) group], diabetes mellitus treated with H2S (STZ + H2S group), and normal rats treated with H2S (H2S group). Diabetes in rats was induced by intra-peritoneal (i.p.) injection of STZ at a dose of 40 mg/kg. NaHS (100 µmol/kg, i.p.), which was used as an exogenous donor of H2S, was administered to rats in the STZ + H2S and H2S groups. After 8 weeks, the pathological morphological changes in myocardial fibers were observed following hematoxylin and eosin and Masson's trichrome staining. Apoptosis of myocardial tissue was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Oxidative stress was evaluated through detecting the content of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), glutathione (GSH) and superoxide dismutase (SOD) in the myocardial cells by ELISA. The expression of collagen III, matrix metalloproteinase (MMP)8, MMP14, tissue inhibitor of metalloproteinase (TIMP)2, transforming growth factor (TGF)-β, cystathionine-γ-lyase (CSE), eukaryotic initiation factor 2α (eIF2α), GRP94, Bcl-2, caspase-3, tumor necrosis factor (TNF)-α, nuclear factor-κB (NF-κB) and proteins related to the JAK/STAT pathway, was detected by western blot analysis. The results indicated that the array of myocardial cells was markedly disordered in STZ group rats; compared with the control group, both myocardial interstitial fibrosis and the deposition of collagen III were increased. Furthermore, the expression ratio of MMPs/TIMPs was dysregulated, while the expression levels of TGF-β, eIF2α, GRP94, caspase-3, TNF-α, NF-κB, MDA and 4-HNE were significantly increased. Furthermore, the expressions of JAK-1/2 and STAT1/3/5/6 were also markedly upregulated, while those of CSE, SOD, GSH and Bcl-2 were downregulated. Compared with the STZ group, these changes were reversed in the STZ + H2S group. The results of the present study demonstrated that H2S can improve myocardial fibrosis in diabetic rats, and the underlying mechanism may be associated with the downregulation of the JAK/STAT signaling pathway, thereby suppressing oxidative stress and ER stress, inflammatory reaction and cell apoptosis.
Mycoplasma hyopneumoniae is a colonizing respiratory pathogen that can cause great economic losses to the pig industry worldwide. Although putative virulence factors have been reported, the pathogenesis of this species remains unclear. Here, we used the virulent M. hyopneumoniae strain 168 to infect swine tracheal epithelial cells (STEC) to identify the infection-associated factors by two-dimensional electrophoresis (2-DE). Whole proteins of M. hyopneumoniae were obtained and compared with samples cultured in broth. Six differentially expressed proteins with an increase in abundance of ≥1.5 in the cell infection group were successfully identified. A String network of virulence-associated proteins showed that all the six differential abundance proteins were involved in virulence of M. hyopneumoniae. One of the most important upregulated hubs in this network, elongation factor thermo unstable (EF-Tu), which showed a relatively higher expression in M. hyopneumoniae-infected STEC and obtained a higher score on mass spectrometry was successfully recombined. In addition to its canonical enzymatic activities in protein synthesis, EF-Tu was also reported to be located on the cell surface as an important adhesin in many other pathogens. The cell surface location of EF-Tu was then observed in M. hyopneumoniae with flow cytometry. Recombinant EF-Tu (rEF-Tu) was found to be able to adhere to STEC and anti-rEF-Tu antibody enclosed M. hyopneumoniae decreased adherence to STEC. In addition, surface plasmon resonance (SPR) analysis showed that rEF-Tu could bind to fibronectin with a specific and moderately strong interaction, a dissociation constant (KD) of 605 nM. Furthermore, the block of fibronectin in STEC also decreased the binding of M. hyopneumoniae to the cell surface. Collectively, these data imply EF-Tu as an important adhesin of M. hyopneumoniae and fibronectin as an indispensable receptor on STEC. The binding between EF-Tu with fibronectin contributes to the adhesion of M. hyopneumoniae to STEC.HIGHLIGHTS Elongation factor thermo unstable (EF-Tu) exists on the cell surface of M. hyopneumoniae.EF-Tu moonlights as an adhesin of M. hyopneumoniae.The adhesive effect of EF-Tu is partly meditated by fibronectin.
Background Bovine viral diarrhea virus (BVDV) is an economically important viral pathogen of domestic and wild ruminants. Apart from cattle, small ruminants (goats and sheep) are also the susceptible hosts for BVDV. BVDV infection could interfere both of the innate and adaptive immunity of the host, while the genes and mechanisms responsible for these effects have not yet been fully understood. Peripheral blood mononuclear cells (PBMCs) play a pivotal role in the immune responses to viral infection, and these cells were the target of BVDV infection. In the present study, the transcriptome of goat peripheral blood mononuclear cells (PBMCs) infected with BVDV-2 was explored by using RNA-Seq technology. Results Goat PBMCs were successfully infected by BVDV-2, as determined by RT-PCR and quantitative real-time RT-PCR (qRT-PCR). RNA-Seq analysis results at 12 h post-infection (hpi) revealed 499 differentially expressed genes (DEGs, fold-change ≥ ± 2, p < 0.05) between infected and mock-infected PBMCs. Of these genes, 97 were up-regulated and the remaining 352 genes were down-regulated. The identified DEGs were found to be significantly enriched for locomotion/ localization, immune response, inflammatory response, defense response, regulation of cytokine production, etc., under GO enrichment analysis. Cytokine-cytokine receptor interaction, TNF signaling pathway, chemokine signaling pathway, etc., were found to be significantly enriched in KEGG pathway database. Protein-protein interaction (PPI) network analysis indicated most of the DEGs related to innate or adaptive immune responses, inflammatory response, and cytokine/chemokine-mediated signaling pathway. TNF, IL-6, IL-10, IL-12B, GM-CSF, ICAM1, EDN1, CCL5, CCL20, CXCL10, CCL2, MAPK11, MAPK13, CSF1R and LRRK1 were located in the core of the network and highly connected with other DGEs. Conclusions BVDV-2 infection of goat PBMCs causes the transcription changes of a series of DEGs related to host immune responses, including inflammation, defense response, cell locomotion, cytokine/chemokine-mediated signaling, etc. The results will be useful for exploring and further understanding the host responses to BVDV-2 infection in goats. Electronic supplementary material The online version of this article (10.1186/s12864-019-5830-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.