This paper proposes a framework for path tracking under additive disturbance when a vehicle travels at high speed or on low-friction road. A decoupling control strategy is adopted, which is made up of robust model predictive control and the stability control combining preview G-vectoring control and direct yaw moment control. A vehicle-road model is adopted for robust model predictive control, and a robust positively invariant set calculated online ensures state constraints in the presence of disturbances. Preview G-vectoring control in stability control generates deceleration and acceleration based on lateral jerk, later acceleration, and curvature at preview point when a vehicle travels through a cornering. Direct yaw moment control with additional activating conditions provides an external yaw moment to stabilize lateral motion and enhances tracking performance. A comparative analysis of stability performance of stability control is presented in simulations, and furthermore, many disturbances are considered, such as varying wind, road friction, and bounded state disturbances from motion planning and decision making. Simulation results show that the stability control combining preview G-vectoring control and direct yaw moment control with additional activating conditions not only guarantees lateral stability but also improves tracking performance, and robust model predictive control endows the overall control system with robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.