This article considers criteria to determine when stop-and-go waves form in platoons of human-driven vehicles, and when they can be dissipated by the presence of an autonomous vehicle. Our analysis takes the start from the observation that the standard notion of string/ring stability definition, which requires uniformity with respect to the number of vehicles in the platoon, is too demanding for a mixed traffic scenario. The setting under consideration is the following: the vehicles run along a ring road and the human-driven vehicles obey a combined follow-the-leader and optimal velocity model, while the autonomous vehicle obeys an appropriately designed model. The criteria are tested on a linearized version of the resulting platoon dynamics and simulation tests using nonlinear model are carried out.
This article proposes a new fixed-time fuzzy adaptive fault-tolerant control methodology for the longitudinal dynamics of hypersonic flight vehicles (HFVs) in the presence of actuator faults, uncertain dynamics and external disturbances. In contrast with the conventional fixed-time control schemes that typically contain the fractional powers of errors in their designs, this work develops a low-complexity control structure in the sense of removing the dependence on the need of above-mentioned fractional power terms by means of prescribed performance control (PPC) method. Different from the most existing PPC approaches where the initial conditions of tracking errors are required to be known, the newly proposed prescribed performance function (PPF) can relax such restrictions through choosing properly small initial values of PPF. Fuzzy logic systems (FLSs) are employed to handle unknown dynamics and minimal learning parameter (MLP) technique is incorporated into the design for the purpose of alleviating computation burden. Closed-loop stability is rigorously proved via Lyapunov stability theory and simulation results are eventually given to validate the effectiveness of the proposed control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.