We aimed to explore the effect of N-retinylidene-N-retinylethanolamine (A2E) on the uptake and release of calcium in lysosomes and mitochondria by establishing a model of human retinal pigment epithelial (RPE) cell injury induced by exposure to blue light. Primary human RPE cells were cultured from passages 4 to 6 and exposed to blue light at an intensity of 2000 ± 500 lux for 6 hours. After blue light exposure, the culture was maintained for 24 hours. A2E at a final concentration of 25 μM was added to the culture 2 hours before light exposure, and nifedipine at a final concentration of 10−4 M was added 1 hour before light exposure. The levels of Ca2+ in the cytosol (CaTM/2AM), mitochondria (Rhod/2AM), and lysosomes (LysoTracker Red and Fluo-3/AM) were determined. In order to measure the calcium levels in the different organelles, RPE were imaged using a laser scanning confocal microscope. Moreover, changes in the mitochondrial membrane potential were detected by flow cytometry analysis of JC-1-stained cells. The obtained results revealed that blue light illumination increased the calcium fluorescence intensity in the cytoplasm, mitochondria, and lysosomes of human RPE cells when compared with the control cells ( P < 0.05 ). After A2E treatment, the fluorescence intensity of the calcium in the cytoplasm was further increased ( P < 0.05 ), while that in the mitochondria and lysosomes decreased ( P < 0.05 ). In addition, we observed that nifedipine reduced the fluorescence intensity of calcium in the RPE cells. Our results also showed that the mitochondrial membrane potential in the RPE treated with blue light and A2E was lower than that in the control, blue light, and A2E-treated cells ( P < 0.05 ). Blue light increased calcium levels in the cytoplasm, lysosomes, and mitochondria of RPE cells. A2E damages the lysosomal and mitochondrial membranes, resulting in calcium release into the cytoplasm. Finally, our results demonstrated that both blue light and A2E treatments reduced mitochondrial membrane potential, increasing cytosolic Ca2+ levels, which can contribute to the activation of RPE death.
Aims. In a model of blue light-induced damage in N-retinylidene-N-retinylethanolamine (A2E)-loaded human retinal pigment epithelial (RPE) cells, we examined the effect of A2E on the calcium (Ca2+)-protein kinase C (PKC) signaling pathway. Methods. Primary human RPE cells were cultured, and the cells in the 4th–6th passages were used in this study. The cells were divided into 5 groups: control cells (no A2E, no blue light), blue light-treated cells, blue light + chloroquine-treated cells, blue light + A2E-treated cells, and blue light + A2E + chloroquine-treated cells. The cells were first treated with chloroquine (15 μM for 12 h) and then loaded with A2E (25 μM for 2 h).The blue light intensity was 2000 ± 500 lux, and the duration was 6 h. After blue light exposure, the cells were cultured for 24 h. Fluo-3/AM staining was used to determine the level of cytoplasmic Ca2+, and the cells were photographed using a laser scanning confocal microscope to analyze the fluorescence intensity. The intracellular levels of inositol triphosphate (IP3) and diacylglycerol (DAG) were measured by enzyme-linked immunosorbent assay (ELISA). Intracellular PKC activity was measured with a nonradioactive nuclide assay. Results. Among all cell groups, the levels of Ca2+, DAG, and IP3 were lowest in the control cells ( P < 0.05 ). The Ca2+, DAG, and IP3 levels in the blue light + A2E-treated cells and blue light + chloroquine-treated cells were higher than those in the blue light-treated cells ( P < 0.05 ). The Ca2+, DAG, and IP3 levels were highest in the blue light + A2E + chloroquine-treated group ( P < 0.05 ). PKC activity was lowest in the control cells ( P < 0.05 ). The PKC activity of the blue light + A2E-treated cells and blue light + chloroquine-treated cells was higher than that of the blue light-treated cells ( P < 0.05 ), and the PKC activity of the blue light + A2E + chloroquine-treated cells was the highest ( P < 0.05 ). Conclusion. Blue light and A2E increased the levels of Ca2+, IP3, and DAG in human RPE cells and enhanced PKC activity, and blue light and A2E had a synergistic effect. Chloroquine further increased the levels of Ca2+, IP3, and DAG and PKC activity in RPE cells or A2E-loaded RPE cells exposed to blue light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.