BackgroundFossil species that can be conclusively identified as stem-relatives of stick- and leaf-insects (Phasmatodea) are extremely rare, especially for the Mesozoic era. This dearth in the paleontological record makes assessments on the origin and age of the group problematic and impedes investigations of evolutionary key aspects, such as wing development, sexual size dimorphism and plant mimicry.Methodology/Principal FindingsA new fossil insect species, Cretophasmomima melanogramma Wang, Béthoux and Ren sp. nov., is described on the basis of one female and two male specimens recovered from the Yixian Formation (Early Cretaceous, ca. 126±4 mya; Inner Mongolia, NE China; known as ‘Jehol biota’). The occurrence of a female abdominal operculum and of a characteristic ‘shoulder pad’ in the forewing allows for the interpretation of a true stem-Phasmatodea. In contrast to the situation in extant forms, sexual size dimorphism is only weakly female-biased in this species. The peculiar wing coloration, viz. dark longitudinal veins, suggests that the leaf-shaped plant organ from the contemporaneous ‘gymnosperm’ Membranifolia admirabilis was used as model for crypsis.Conclusions/SignificanceAs early as in the Early Cretaceous, some stem-Phasmatodea achieved effective leaf mimicry, although additional refinements characteristic of recent forms, such as curved fore femora, were still lacking. The diversification of small-sized arboreal insectivore birds and mammals might have triggered the acquisition of such primary defenses.
PurposeNear-net-shaped processes of jet engine blade have better performance in both reducing the material waste during production and improving work reliability in service, while the geometric features of blade, both sculptured surface and thin-walled shape, make the precise machining of blade challenging and difficult owing to its dynamics behaviors under complex clamping and machining loads. This paper aims to present a fundamental approach on modeling and performance analysis of the blade–fixture system.Design/methodology/approachA computerized framework on the complex blade–fixture dynamic behavior has been developed. Theoretical mechanic analysis on blade fixturing and machining is proposed with an especial emphasis on the boundary conditions of the blade–fixture system. Then the finite element analysis (FEA) method is used to simulate the variation trend of preloads, stiffness and blade distortion. The strong influence of parameters of workpiece–fixture configuration on blade distortion and machining error is investigated.FindingsWith a case of real jet engine blade machining, the experimental results and theoretical predictions suggest good agreement on their variation tendency. The loaded pressure of clamps has a critical influence on the total stiff performance of the blade–fixture system, and the profile error of the blade contributes much to the inconsistency in geometric dimension and surface integrity of blades’ machining. In the end, the results also validate the effectiveness of this methodology to predict and improve the performance of the blade–fixture configuration design.Originality/valueThe adaptive machining of near-net-shaped jet engine blade is a new high-performance manufacturing technology in aerospace production. This study provides a fundamental methodology for the performance analysis of blade-fixture system, to clear the variation law of blade distortion during preloading and machining, which will contribute to minimize the machining error and improve productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.