The lipid liquid crystalline sponge phase (L3) has the advantages that it is a nanoscopically bicontinuous bilayer network able to accommodate large amounts of water and it is easy to manipulate due to its fluidity. This paper reports on the detailed characterization of L3 phases with water channels large enough to encapsulate bioactive macromolecules such as proteins. The aqueous phase behavior of a novel lipid mixture system, consisting of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) was studied. In addition, sponge-like nanoparticles (NPs) stabilized by Polysorbate 80 (P80) were prepared based on the DGMO/GMO-50 system, and their structure was correlated with the phase behavior of the corresponding bulk system. These NPs were characterized by dynamic light scattering (DLS), cryo-transmission electron microscopy (Cryo-TEM) and small angle X-ray scattering (SAXS) to determine their size, shape, and inner structure as a function of the DGMO/GMO-50 ratio. In addition, the effect of P80 as stabilizer was investigated. We found that the NPs have aqueous pores with diameters up to 13 nm, similar to the ones in the bulk phase.
ABSTRACT:In demyelinating diseases such as multiple sclerosis, disrupted myelin structures impair the functional role of the sheath as an insulating layer for proper nerve conduction. Though the etiology and recovery pathways remain unclear, in vivo studies show alterations in the lipid and the adhesive protein (myelin basic protein, MBP) composition. We find that in vitro cytoplasmic myelin membranes with modified lipid composition and low MBP concentration, as in demyelinating disease, show structural instabilities and pathological phase transition from a lamellar to inverted hexagonal, which involve enhanced local curvature. Similar curvatures are also found in vivo in diseased myelin sheaths. In addition, MBP dimers form a correlated mesh-like network within the inner membrane space, only in the vicinity of native lipid composition. These findings delineate the distinct functional roles of dominant constituents in cytoplasmic myelin sheaths, and shed new light on mechanisms disrupting lipid−protein complexes in the diseased state.
SignificanceIn demyelination diseases, such as multiple sclerosis, the structure of the axons’ protective sheaths is disrupted. Due to the proximity of cytoplasmic myelin membrane to structural phase transition, minor alterations in the local environmental conditions can have devastating results. Using small-angle X-ray scattering and cryogenic transmission electron microscopy, we show that drastic structural reorganization and instabilities of myelin membrane are linked to specific environmental conditions and molecular composition in healthy and diseased states. These instabilities involve phase transition from the healthy lamellar membranes to pathological inverted hexagonal phase. These results highlight that local environmental conditions are critical for myelin function and should be considered as alternative routes for early pathology and as a means to avoid the initiation of demyelination.
The interaction between amphiphiles and polyelectrolytes has been widely investigated in recent years due to their potential application in industry and medicine, with special focus on gene therapy. The cationic lipid dioleoyl trimethylammonium propane, DOTAP, and the oppositely charged polyelectrolytes, sodium poly(acrylic acid) and sodium poly(styrenesulfonate), form multilamellar complexes in water. Because of the different molecular stiffness of the two polyelectrolytes, they form different nanostructured complexes. Also, because of the different ionization behavior of the two polyelectrolytes, pH differently affects the complexation of the polyelectrolytes with didodecyldimethylammonium bromide (DDAB), another cationic surfactant. We used cryogenic temperature transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS) to compare the nanostructures formed. Our results show that although the basic nanostructures of the complexes are always lamellar (multilamellar or unilamellar) the morphology of the complexes is affected by the polyelectrolyte rigidity and the solution pH.
Self-assembled aggregates formed by semidilute polyanion hyaluronan (hyaluronic acid, HA) and an oppositely charged surfactant tetradecyltrimethylammonium bromide (TTAB) in an aqueous phosphate-buffered saline (PBS) solution have been studied via light scattering (LS), small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryo-TEM). The addition of 0−20 mM TTAB to a 27.7 mM (monomer, 1 wt %) HA solution (597 kDa) in PBS buffer leads to soluble complexes until phase separation occurs near charge equilibrium (>20 mM TTAB). While the viscosity remains rather constant, already small amounts of added TTAB lead to the formation of large globular superstructures, which are built in a hierarchical fashion from a locally threadlike structural arrangement of TTA micelles along the stiff HA chains, within the little changed HA network. These globular domains have radii of 60−100 nm and contain 500−700 TTA micelles, which means that they are very "fluffy" and composed of about 99% water. They do not grow in size or number upon further TTAB addition, but, instead, the additional TTA micelles form further threadlike complexes outside of the big globular domains. Such a type of polyelectrolyte−surfactant complexes (PESCs) has not been described before and has to be attributed to the particular properties of HA, which are high stiffness and relatively weak interactions with oppositely charged micelles due to having the charged carboxylic group close to the polysaccharide backbone. These findings demonstrate that the HA network structure in solution basically remains unaffected by complexation with an oppositely charged surfactant, explaining the unchanged rheological behavior and the formation of a unique PESC local "coacervate" structure within the HA hydrogel network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.