Mindset has been shown to have a large impact on people’s academic, social, and work achievements. A growth mindset, i.e., the belief that success comes from effort and perseverance, is a better indicator of higher achievements as compared to a fixed mindset, i.e., the belief that things are set and cannot be changed. Interventions aimed at promoting a growth mindset in children range from teaching about the brain’s ability to learn and change, to playing computer games that grant brain points for effort rather than success. This work explores a novel paradigm to foster a growth mindset in young children where they play a puzzle solving game with a peer-like social robot. The social robot is fully autonomous and programmed with behaviors suggestive of it having either a growth mindset or a neutral mindset as it plays puzzle games with the child. We measure the mindset of children before and after interacting with the peer-like robot, in addition to measuring their problem solving behavior when faced with a challenging puzzle. We found that children who played with a growth mindset robot 1) self-reported having a stronger growth mindset and 2) tried harder during a challenging task, as compared to children who played with the neutral mindset robot. These results suggest that interacting with peer-like social robot with a growth mindset can promote the same mindset in children.
We show that Py-Calabi quasi-morphism on the group of Hamiltonian diffeomorphisms of surfaces of higher genus gives rise to a quasistate.
Artificial curiosity, based on developmental psychology concepts wherein an agent attempts to maximize its learning progress, has gained much attention in recent years. Similarly, social robots are slowly integrating into our daily lives, in schools, factories, and in our homes. In this contribution, we integrate recent advances in artificial curiosity and social robots into a single expressive cognitive architecture. It is composed of artificial curiosity and social expressivity modules and their unique link, i.e., the robot verbally and non-verbally communicates its internally estimated learning progress, or learnability, to its human companion. We implemented this architecture in an interaction where a fully autonomous robot took turns with a child trying to select and solve tangram puzzles on a tablet. During the curious robot’s turn, it selected its estimated most learnable tangram to play, communicated its selection to the child, and then attempted at solving it. We validated the implemented architecture and showed that the robot learned, estimated its learnability, and improved when its selection was based on its learnability estimation. Moreover, we ran a comparison study between curious and non-curious robots, and showed that the robot’s curiosity-based behavior influenced the child’s selections. Based on the artificial curiosity module of the robot, we have formulated an equation that estimates each child’s moment-by-moment curiosity based on their selections. This analysis revealed an overall significant decrease in estimated curiosity during the interaction. However, this drop in estimated curiosity was significantly larger with the non-curious robot, compared to the curious one. These results suggest that the new architecture is a promising new approach to integrate state-of-the-art curiosity-based algorithms to the growing field of social robots.
There is a growing trend to teach playing an instrument such as a piano at home using an automated system. A key component of such systems is the ability to rate performance of the learner in order to provide feedback and select appropriate exercises. In this study, we expand on previous works that have developed automatic evaluation systems for an overall grade by also providing predictions for specific aspects of performance: pitch, rhythm, tempo, and articulation & dynamics, as well as scheduling what is an appropriate next task. We describe how a set of salient features is extracted UMAP '22, July 4-7, 2022, Barcelona, Spain Tamir-Ostrover et al. by comparing MIDI performance data of three piano players to an ideal performance, how the features used for evaluation are selected, and evaluate using linear regression how well the selected features are able to predict the mean scores given by a group of domain experts (piano teachers). Relatively good 𝑅 2 scores (0.54 to 0.68) are achieved using a small number of features (2 -4). Such automatic evaluation of different aspects of performance can be used as a part of an automatic learning system, and to help provide learners with detailed feedback on their performance. CCS CONCEPTS• Human-centered computing → Sound-based input / output; User models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.