Background: Previous studies have shown that some phytoestrogens inhibits proliferation and induces apoptosis in estrogen-dependent cancers via estrogen receptor (ER)-mediated signaling pathway. In view of the expression of ER in human osteosarcoma cells, the purpose of this study is to investigate whether formononetin and calycosin, two of the major isoflavones in Radix astragali, could also elicit anti-tumor activity against osteosarcoma, along with the underlying mechanism. Methods: Human osteosarcoma cells U2OS were respectively treated with various concentrations of formononetin or calycosin. Cell proliferation was determined by MTT assay, while apoptosis by flow cytometry. Next, the expression levels of apoptosis-related genes ERK, Akt, Bcl-2, Bax and caspase-3 were quantified by real-time PCR and Western blotting. Results: Formononetin exhibited higher anti-proliferative activities toward human osteosarcoma cells U2OS, when compared with calycosin. Therefore, U2OS cells were then respectively treated with various concentrations of formononetin, in order to elucidate the isoflavones-related signaling pathway. It was found that formononetin dose-dependently triggered apoptosis of U2OS cells in vitro. Furthermore, treatment of formononetin led to significant inactivation of ERK and Akt, followed by downregulation of Bcl-2, upregulation of Bax and finally increased expression of caspase-3. Conclusion: Formononetin is more effective than calycosin at promoting cell death of U2OS cells by induction of apoptosis, which is mediated by inactivation of ERK and Akt signaling pathways. Thus isoflavones, especially formononetin, may be useful as anti-cancer drugs for osteosarcoma through their apoptosis-inducing effects.
Mesenchymal stem cells were first isolated and grown in vitro by Friedenstein over 40 yr ago; however, their isolation remains challenging as they lack unique markers for identification and are present in very small quantities in mesenchymal tissues and bone marrow. Using whole marrow samples, common methods for mesenchymal stem cell isolation are the adhesion method and density gradient fractionation. The whole marrow sample adhesion method still results in the nonspecific isolation of mononuclear cells, and activation and/or potential loss of target cells. Density gradient fractionation methods are complicated, and may result in contamination with toxic substances that affect cell viability. In the present study, we developed an optimized protocol for the isolation and purification of mesenchymal stem cells based on the principles of hypotonic lysis and natural sedimentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.