An ideal anti-counterfeiting technique has to be inexpensive, mass-producible, nondestructive, unclonable and convenient for authentication. Although many anti-counterfeiting technologies have been developed, very few of them fulfill all the above requirements. Here we report a non-destructive, inkjet-printable, artificial intelligence (AI)-decodable and unclonable security label. The stochastic pinning points at the three-phase contact line of the ink droplets is crucial for the successful inkjet printing of the unclonable security labels. Upon the solvent evaporation, the three-phase contact lines are pinned around the pinning points, where the quantum dots in the ink droplets deposited on, forming physically unclonable flower-like patterns. By utilizing the RGB emission quantum dots, full-color fluorescence security labels can be produced. A convenient and reliable AI-based authentication strategy is developed, allowing for the fast authentication of the covert, unclonable flower-like dot patterns with different sharpness, brightness, rotations, amplifications and the mixture of these parameters.
Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants.
Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility in women of reproductive age. Chronic inflammation is considered to be the cause of ovarian dysfunction. Increasing evidence in animal studies and in preliminary clinical trials has demonstrated that MSCs possess immunomodulatory effects via their interaction with immune cells. However, their contribution to PCOS remains unclear. In this study, we showed that the administration of hUC-MSCs could efficiently improve the pathological changes of PCOS mice induced by dehydroepiandrosterone (DHEA), including ovarian histopathology and function. Moreover, we found that the administration of MSCs significantly downregulated the expression of proinflammatory factors (TNF-α, IL-1β, and IFN-γ) and fibrosis-related genes (CTGF) in ovarian and uterus tissues and affected the systemic inflammatory response. The percentage of peripheral neutrophils, M1 macrophages, and B cells was significantly reduced, while M2 macrophages and regulatory T cells (Tregs) were increased in hUC-MSC-treated mice. In the spleen, the percentage of neutrophils, M1 macrophages, IFN-γ+CD19+B cell, IFN-γ+CD4+T cells (Th1), and IL-17+CD4+T cells (Th17) was significantly decreased in hUC-MSC-treated mice. These results suggested that hUC-MSC treatment could alleviate ovarian dysfunction by inhibiting ovarian local and systemic inflammatory responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.