Several of the biggest challenges in taxonomy and systematics are related to a toxic mixture of small size, abundance, and rarity. There are too many species in groups with too few taxonomists and many of these species are very rare and hard to find because they are hidden in mass samples. To make matters worse, these species often have life‐history stages that are morphologically so different that it is difficult to identify them as semaphoronts of the same species. We demonstrate that these biodiversity challenges can be addressed with cost‐effective molecular markers. Here, we describe a next‐generation‐sequencing protocol that can yield barcodes at a chemical cost of < 0.40 USD per specimen. We use this protocol to generate molecular markers for 1015 specimens of tropical midges (Diptera: Chironomidae). The barcodes cluster into 52–61 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering (OC), Generalized Mixed Yule Coalescent (GMYC), or Poisson Tree Process (PTP) is used. More than half of the putative species are rare (< 10 specimens) and we are able to match larvae and adults for 24 of these OTUs. We argue that the proposed protocol will help with processing specimen‐rich biodiversity samples at low cost.
Biologists frequently sort specimen-rich samples to species. This process is daunting when based on morphology, and disadvantageous if performed using molecular methods that destroy vouchers (e.g., metabarcoding). An alternative is barcoding every specimen in a bulk sample and then presorting the specimens using DNA barcodes, thus mitigating downstream morphological work on presorted units. Such a "reverse workflow" is too expensive using Sanger sequencing, but we here demonstrate that is feasible with an next-generation sequencing (NGS) barcoding pipeline that allows for cost-effective high-throughput generation of short specimen-specific barcodes (313 bp of COI; laboratory cost <$0.50 per specimen) through next-generation sequencing of tagged amplicons. We applied our approach to a large sample of tropical ants, obtaining barcodes for 3,290 of 4,032 specimens (82%). NGS barcodes and their corresponding specimens were then sorted into molecular operational taxonomic units (mOTUs) based on objective clustering and Automated Barcode Gap Discovery (ABGD). High diversity of 88-90 mOTUs (4% clustering) was found and morphologically validated based on preserved vouchers. The mOTUs were overwhelmingly in agreement with morphospecies (match ratio 0.95 at 4% clustering). Because of lack of coverage in existing barcode databases, only 18 could be accurately identified to named species, but our study yielded new barcodes for 48 species, including 28 that are potentially new to science. With its low cost and technical simplicity, the NGS barcoding pipeline can be implemented by a large range of laboratories. It accelerates invertebrate species discovery, facilitates downstream taxonomic work, helps with building comprehensive barcode databases and yields precise abundance information.
Background The world’s fast disappearing mangrove forests have low plant diversity and are often assumed to also have a species-poor insect fauna. We here compare the tropical arthropod fauna across a freshwater swamp and six different forest types (rain-, swamp, dry-coastal, urban, freshwater swamp, mangroves) based on 140,000 barcoded specimens belonging to ca. 8500 species. Results We find that the globally imperiled habitat “mangroves” is an overlooked hotspot for insect diversity. Our study reveals a species-rich mangrove insect fauna (>3000 species in Singapore alone) that is distinct (>50% of species are mangrove-specific) and has high species turnover across Southeast and East Asia. For most habitats, plant diversity is a good predictor of insect diversity, but mangroves are an exception and compensate for a comparatively low number of phytophagous and fungivorous insect species by supporting an unusually rich community of predators whose larvae feed in the productive mudflats. For the remaining tropical habitats, the insect communities have diversity patterns that are largely congruent across guilds. Conclusions The discovery of such a sizeable and distinct insect fauna in a globally threatened habitat underlines how little is known about global insect biodiversity. We here show how such knowledge gaps can be closed quickly with new cost-effective NGS barcoding techniques.
We here compare the tropical arthropod fauna across a freshwater swamp and six different forest types (rain-, swamp, dry-coastal, urban, freshwater swamp, mangroves) based on 140,000 specimens belonging to ca. 8,500 species. Surprisingly, we find that mangroves, a globally imperiled habitat that had been expected to be species-poor for insects, are an overlooked hotspot for insect diversity despite having low plant diversity. Mangroves are very species-rich (>3,000 species) and distinct (>50% of species are mangrove-specific) with high species turnover across Southeast and East Asia. Overall, plant diversity is a good predictor for insect diversity for most habitats, but mangroves compensate for the low number of phytophagous and fungivorous species by supporting an unusually rich community of predators whose larvae feed in the productive mudflats. For the remaining habitats, the insect communities have diversity patterns that are largely congruent across guilds. The discovery of such a sizeable and distinct insect fauna in a globally threatened habitat underlines how little is known about global insect biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.