BackgroundHuman BarH‐like homeobox 2 (Barx2), a homeodomain factor of the Bar family, plays a critical role in cell adhesion and cytoskeleton remodeling, and has been reported in an increasing array of tumor types except non‐small cell lung carcinoma (NSCLC). The purpose of the current study was to characterize the expression of Barx2 and assess the clinical significance of Barx2 in NSCLC.MethodsQuantitative real‐time polymerase chain reaction, immunohistochemistry and western blot analysis were used to examine mRNA and protein expression, respectively. The relationships between Barx2 expression and clinicopathological variables were analyzed. Cell Counting Kit‐8 and plate colony formation assay were used to detect cell proliferation. Transwell assay was used to examine cell migration ability. Glucose uptake, lactate, adenosine triphosphate, and lactate dehydrogenase assays were used to detect aerobic glycolysis.ResultsBarx2 is downregulated in NSCLC tissues compared with para‐carcinoma. Furthermore, Barx2 expression shows a negative correlation with advanced TNM stage and a high level of Ki‐67. Survival analysis reveals that Barx2 level is an independent prognostic factor for NSCLC patients. The Barx2 (low) Ki‐67 (high) group had the worst prognosis. Furthermore, the data indicate that downregulation of Barx2 expression promotes cell proliferation, migration, and aerobic glycolysis, including increased lactate dehydrogenase activity, glucose utilization, lactate production, and decreased intracellular adenosine triphospahte level. Furthermore, Barx2 acts as a negative regulator of the canonical Wnt/β‐catenin pathway. Reactivation of Wnt/β‐catenin pathway by LiCl can reverse the inhibiting effect of Barx2.ConclusionsThese findings reveal that Barx2 serving as a tumor suppressor gene could decrease cell proliferation, migration, and aerobic glycolysis through inhibiting the Wnt/β‐catenin signaling pathway, and predicts a good prognosis in NSCLC.
The article provides a novel method to control the amount of unbalance propagation in precise cylindrical components assembly, which takes the machining error, the measurement error, and the assembly error into account. The coefficient and the correction factor matrices of mass eccentric deviations are defined to analyze the amount of unbalance propagation by building the connective assembly model. The influence of the machining error, the measurement error, and the assembly error on the mass center is analyzed in the assembly. The cumulative mass eccentric deviation can be reduced stage by stage in the assembly, and the amount of unbalance of final assembly can be minimized by controlling the assembly angle of each component. The effectiveness of the proposed method is verified by the assembly of the real aero-engine using the optimal assembly strategy. Compared to the worst assembly strategy, the values of the amount of unbalance using the optimal assembly strategy are reduced by 20%, 76%, and 79% for two, three, and four components assembly, respectively. Besides, the reasonable tolerance design area for each component is obtained with the proposed method for the real aero-engine assembly with four components. The proposed method can improve the assembly accuracy of cylindrical components and can be used for assembly guidance and tolerance design, especially for the assembly of multistage precise cylindrical components.
The precision measurement and evaluation of the geometry form error for high-end precision components is one of the most important tasks for metrologists. In this paper, a novel hybrid flatness error evaluation method is proposed to measure and evaluate the flatness error for large-scale point cloud data. This method is based on the convex hull algorithm and the improved particle swarm optimization (IPSO) algorithm. Not only are a large number of redundant measurement data points effectively removed through the convex hull algorithm, but also this operation does not lose any valuable information for flatness error evaluation. Then an accurate mathematical model for flatness error evaluation is established based on the minimum zone criteria recommended by ISO, and then the IPSO algorithm is adopted to solve this complex non-linear optimization problem. In particular, the non-linear dynamic inertia weights w and learning factors c 1 , c 2 are introduced to improve the calculation accuracy. Finally, the proposed method is verified through an experiment measuring and evaluating the flatness error of an aero-engine rotor connection surface. The effective measurement data points are reduced from 18 000 to 856, or 4.76%, which is significant compared to the original data points. The flatness error evaluation result is 369 µm according to the IPSO method that we propose. Last but not least, we compare our method with the traditional least squares method and unmodified particle swarm optimization algorithm. The calculation results indicate that the evaluation accuracy is increased by 21 µm and 44 µm, respectively.
Background: Clinical studies have suggested nebulized budesonide (NB) as an alternative to systemic corticosteroids for patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, the optimal budesonide dose for AECOPD remains unclear. Objectives: To compare the efficacy and safety of different doses of NB in the management of AECOPD. Patients and Methods: A total of 321 AECOPD patients with moderate-to-severe exacerbation were randomly divided into three groups and treated with NB. The low dose group (L) was given 4 mg/day (n=95, 1 mg Q6h), while high-dose group 1 (H1, n=111, 2 mg Q6h) and high-dose group 2 (H2, n=115, 4 mg Q12h) were given 8 mg/day. Patients also received routine treatment including oxygen therapy, expectorant, nebulization bronchodilators, antibiotics, and fluid rehydration. The COPD assessment test (CAT), lung function, and artery blood gas were evaluated before and after 3 hrs and 5 days of treatment. In addition, hospital stay, frequency of acute exacerbations within 3 months of discharge, and adverse events during treatment were compared. Results: H1 and H2 showed improved spirograms and CAT score faster than L. In H2, forced expiratory volume in 1 s (FEV 1 %) at 3 hrs and FEV 1 %, forced expiratory flow after 50% of the forced vital capacity has been exhaled (FEF 50%), mean forced expiratory flow between 25% and 75% of forced vital capacity (FEF 25-75%) and CAT score at 5 days were significantly improved compared to L. FEV 1 % improved most in H2, moderately in H1, and least in L, with significant differences between groups at 5 days. No differences between groups were observed in adverse effects, hospital stay, and frequency of exacerbations within 3 months of discharge. Conclusion: Compared to the conventional dose (4 mg/day), a high dose (8 mg/day) of NB improved pulmonary function and symptoms more effectively in the early treatment of AECOPD, especially when given as 4 mg twice daily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.