The electrochemical CO reduction (ECDRR), as a key reaction in artificial photosynthesis to implement renewable energy conversion/storage, has been inhibited by the low efficiency and high costs of the electrocatalysts. Herein, we synthesize a fluorine-doped carbon (FC) catalyst by pyrolyzing commercial BP 2000 with a fluorine source, enabling a highly selective CO -to-CO conversion with a maximum Faradaic efficiency of 90 % at a low overpotential of 510 mV and a small Tafel slope of 81 mV dec , outcompeting current metal-free catalysts. Moreover, the higher partial current density of CO and lower partial current density of H on FC relative to pristine carbon suggest an enhanced inherent activity towards ECDRR as well as a suppressed hydrogen evolution by fluorine doping. Fluorine doping activates the neighbor carbon atoms and facilitates the stabilization of the key intermediate COOH* on the fluorine-doped carbon material, which are also blocked for competing hydrogen evolution, resulting in superior CO -to-CO conversion.
Hydrogen generation from water splitting driven by electric/solar energy is highly desirable, which requires efficient and robust bifunctional electrocatalysts for both hydrogen and oxygen evolution reactions. 2D porous hybrids with attractive chemical and structural properties are the first‐class candidates for water splitting, while control over efficient and modulable synthesis remains a huge challenge. This work demonstrates a zeolitic imidazolate framework‐67 (ZIF‐67) nanoplate self‐template approach to fabricate 2D porous oxygen‐incorporated cobalt phosphide (CoPO) ultrathin nanosheets. The synthesis starts with the oriented growth of ZIF‐67 nanoplates along [211] crystal plane, followed by oxidation/phosphorization processes for pore generation and O/P coincorporation in the hybrid. The resultant 2D porous CoPO nanosheets afford very small voltages of 1.52 and 1.98 V for overall water splitting at 10 and 200 mA cm−2, respectively. This excellent bifunctionality further provides the basis for photovoltage‐driven water splitting at a Faradaic efficiency of 97.6%. These findings offer a general strategy for rational design and modulation of 2D porous catalysts for various electrocatalytic and other applications.
As a promising technique for CO2 fixation/utilization and energy conversion/storage, the metal–CO2 battery has been studied to improve its interconversion between CO2 and carbonates/oxalates. Herein, we propose and realize a reversible aqueous Zn–CO2 battery based on the reversible conversion between CO2 and liquid HCOOH on a bifunctional Pd cathode. The 3D porous Pd interconnected nanosheet with enriched edge and pore structure, has a highly electrochemical active surface to facilitate simultaneous selective CO2 reduction and HCOOH oxidation at low overpotentials. The resulting battery has a 1 V charge voltage, a cycling durability over 100 cycles, and a high energy efficiency of 81.2 %. The battery mechanism is proposed as Zn+CO2+2 H++2 OH−↔ ZnO+HCOOH+H2O, through which the reversible conversion between CO2 and liquid HCOOH was realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.