Food safety issues are directly related to people’s quality of life, so there is a need to develop efficient and reliable food contaminants’ detection devices to ensure the safety and quality of food. Electrochemical biosensors have the significant advantages of miniaturization, low cost, high sensitivity, high selectivity, rapid detection, and low detection limits using small amounts of samples, which are expected to enable on-site analysis of food products. In this paper, the latest electrochemical biosensors for the detection of biological contaminants, chemical contaminants, and genetically modified crops are reviewed based on the analytes of interest, electrode materials and modification methods, electrochemical methods, and detection limits. This review shows that electrochemical biosensors are poised to provide miniaturized, specific, selective, fast detection, and high-sensitivity sensor platforms for food safety.
Biosensors play a central role in moving diagnostics to being on‐site or decentralized. Affinity biosensor, an important category of biosensors, has important applications in clinical diagnosis, pharmaceuticals, immunology, and other fields. Affinity biosensors rely on specific binding between target analytes and biological ligands such as antibodies, nucleic acids, or other receptors to generate measurable signals. Oftentimes the target analytes in practical samples are of low abundance in a complex matrix. Traditional affinity biosensors mainly rely on random diffusion of analytes in solution to conjugate with biorecognition elements on the sensor surface of electrodes. The process may take hours or even days, which is not conducive to rapid and sensitive detection of biosensors. Therefore, it is strongly desired to incorporate an enrichment mechanism for target analytes into biosensor‐based detection. AC electrokinetic (ACEK) effect can realize rapid enrichment of analytes by application of AC electric fields, which holds great promise for achieving high sensitivity, low detection limit, and rapid turnaround. This article reviews the studies of affinity biosensors integrated with ACEK enrichment in the past decade, and summarizes the latest detection methods, detection devices and applications, hoping to provide some insights and references for researchers in related fields.
DOI: https://doi.org/10.1002/elps.202100168 The cover picture shows how affinity‐based electroanalytical biosensors can be enhanced by integrated AC electrokinetic (ACEK) effects. ACEK effects, including AC electrothermal (ACET) effect, AC electroosmosis (ACEO) effect and dielectrophoretic (DEP) effect, are produced by applying AC signals to the interdigitated electrode arrays. ACEK effects induce directed movement of microflows and particles (e.g., proteins, nucleic acids, bacteria, small molecules, etc.) in the solution, so that the analytes in the solution can be quickly routed toward the surface of biosensors, thus improving the binding efficiency between the analytes and the probes on the surface of the sensor. Studies have shown that the method holds great promise for achieving high sensitivity, low detection limit and rapid turnaround.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.