Neuronal representations of external events are often distributed across large populations of cells. We study the effect of correlated noise on the accuracy of these neuronal population codes. Our main question is whether the inherent error in the population code can be suppressed by increasing the size of the population N in the presence of correlated noise. We address this issue using a model of a population of neurons that are broadly tuned to an angular variable in two dimensions. The fluctuations in the neuronal activities are modeled as Gaussian noises with pairwise correlations that decay exponentially with the difference between the preferred angles of the correlated cells. We assume that the system is broadly tuned, which means that both the correlation length and the width of the tuning curves of the mean responses span a substantial fraction of the entire system length. The performance of the system is measured by the Fisher information (FI), which bounds its estimation error. By calculating the FI in the limit of a large N, we show that positive correlations decrease the estimation capability of the network, relative to the uncorrelated population. The information capacity saturates to a finite value as the number of cells in the population grows. In contrast, negative correlations substantially increase the information capacity of the neuronal population. These results are supplemented by the effect of correlations on the mutual information of the system. Our analysis provides an estimate of the effective number of statistically independent degrees of freedom, denoted N(eff), that a large correlated system can have. According to our theory N(eff) remains finite in the limit of a large N. Estimating the parameters of the correlations and tuning curves from experimental data in some cortical areas that code for angles, we predict that the number of effective degrees of freedom embedded in localized populations in these areas is less than or of the order of approximately 10(2).
In many cortical and subcortical areas, neurons are known to modulate their average firing rate in response to certain external stimulus features. It is widely believed that information about the stimulus features is coded by a weighted average of the neural responses. Recent theoretical studies have shown that the information capacity of such a coding scheme is very limited in the presence of the experimentally observed pairwise correlations. However, central to the analysis of these studies was the assumption of a homogeneous population of neurons. Experimental findings show a considerable measure of heterogeneity in the response properties of different neurons. In this study, we investigate the effect of neuronal heterogeneity on the information capacity of a correlated population of neurons. We show that information capacity of a heterogeneous network is not limited by the correlated noise, but scales linearly with the number of cells in the population. This information cannot be extracted by the population vector readout, whose accuracy is greatly suppressed by the correlated noise. On the other hand, we show that an optimal linear readout that takes into account the neuronal heterogeneity can extract most of this information. We study analytically the nature of the dependence of the optimal linear readout weights on the neuronal diversity. We show that simple online learning can generate readout weights with the appropriate dependence on the neuronal diversity, thereby yielding efficient readout.
Theoretical and experimental studies of distributed neuronal representations of sensory and behavioral variables usually assume that the tuning of the mean firing rates is the main source of information. However, recent theoretical studies have investigated the effect of cross-correlations in the trial-to-trial fluctuations of the neuronal responses on the accuracy of the representation. Assuming that only the first-order statistics of the neuronal responses are tuned to the stimulus, these studies have shown that in the presence of correlations, similar to those observed experimentally in cortical ensembles of neurons, the amount of information in the population is limited, yielding nonzero error levels even in the limit of infinitely large populations of neurons. In this letter, we study correlated neuronal populations whose higher-order statistics, and in particular response variances, are also modulated by the stimulus. Weask two questions: Does the correlated noise limit the accuracy of the neuronal representation of the stimulus? and, How can a biological mechanism extract most of the information embedded in the higher-order statistics of the neuronal responses? Specifically, we address these questions in the context of a population of neurons coding an angular variable. We show that the information embedded in the variances grows linearly with the population size despite the presence of strong correlated noise. This information cannot be extracted by linear readout schemes, including the linear population vector. Instead, we propose a bilinear readout scheme that involves spatial decorrelation, quadratic nonlinearity, and population vector summation. We show that this nonlinear population vector scheme yields accurate estimates of stimulus parameters, with an efficiency that grows linearly with the population size. This code can be implemented using biologically plausible neurons.
It has been suggested that excitatory and inhibitory inputs to cortical cells are balanced, and that this balance is important for the highly irregular firing observed in the cortex. There are two hypotheses as to the origin of this balance. One assumes that it results from a stable solution of the recurrent neuronal dynamics. This model can account for a balance of steady state excitation and inhibition without fine tuning of parameters, but not for transient inputs. The second hypothesis suggests that the feed forward excitatory and inhibitory inputs to a postsynaptic cell are already balanced. This latter hypothesis thus does account for the balance of transient inputs. However, it remains unclear what mechanism underlies the fine tuning required for balancing feed forward excitatory and inhibitory inputs. Here we investigated whether inhibitory synaptic plasticity is responsible for the balance of transient feed forward excitation and inhibition. We address this issue in the framework of a model characterizing the stochastic dynamics of temporally anti-symmetric Hebbian spike timing dependent plasticity of feed forward excitatory and inhibitory synaptic inputs to a single post-synaptic cell. Our analysis shows that inhibitory Hebbian plasticity generates ‘negative feedback’ that balances excitation and inhibition, which contrasts with the ‘positive feedback’ of excitatory Hebbian synaptic plasticity. As a result, this balance may increase the sensitivity of the learning dynamics to the correlation structure of the excitatory inputs.
A central finding in many cortical areas is that single neurons can match behavioral performance in the discrimination of sensory stimuli. However, whether this is true for natural behaviors involving complex natural stimuli remains unknown. Here we use the model system of songbirds to address this problem. Specifically, we investigate whether neurons in field L, the homolog of primary auditory cortex, can match behavioral performance in the discrimination of conspecific songs. We use a classification framework based on the (dis)similarity between single spike trains to quantify neural discrimination. We use this framework to investigate the discriminability of single spike trains in field L in response to conspecific songs, testing different candidate neural codes underlying discrimination. We find that performance based on spike timing is significantly higher than performance based on spike rate and interspike intervals. We then assess the impact of temporal correlations in spike trains on discrimination. In contrast to widely discussed effects of correlations in limiting the accuracy of a population code, temporal correlations appear to improve the performance of single neurons in the majority of cases. Finally, we compare neural performance with behavioral performance. We find a diverse range of performance levels in field L, with neural performance matching behavioral accuracy only for the best neurons using a spike-timing-based code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.