Summary
Myeloma is one of the most common malignancies that results in osteolytic lesions of the spine. Complications, including pathological fractures of the vertebrae and spinal cord compression, may cause severe pain, deformity and neurological sequelae. They may also have significant consequences for quality of life and prognosis for patients. For patients with known or newly diagnosed myeloma presenting with persistent back or radicular pain/weakness, early diagnosis of spinal myeloma disease is therefore essential to treat and prevent further deterioration. Magnetic resonance imaging is the initial imaging modality of choice for the evaluation of spinal disease. Treatment of the underlying malignancy with systemic chemotherapy together with supportive bisphosphonate treatment reduces further vertebral damage. Additional interventions such as cement augmentation, radiotherapy, or surgery are often necessary to prevent, treat and control spinal complications. However, optimal management is dependent on the individual nature of the spinal involvement and requires careful assessment and appropriate intervention throughout. This article reviews the treatment and management options for spinal myeloma disease and highlights the value of defined pathways to enable the proper management of patients affected by it.
BackgroundFanconi anemia (FA) is an inherited genomic instability disorder with congenital and developmental abnormalities, bone marrow failure and predisposition to cancer early in life, and cellular sensitivity to DNA interstrand crosslinks.Case presentationA fifty-one-year old female patient, initially diagnosed with FA in childhood on the basis of classic features and increased chromosomal breakage, and remarkable sun-sensitivity is described. She only ever had mild haematological abnormalities and no history of malignancy. To identify and characterise the genetic defect in this lady, who is one of the oldest reported FA patients, we used whole-exome sequencing for identification of causative mutations, and functionally characterized the cellular phenotype. Detection of the novel splice site mutation c.793-2A > G and the previously described missense mutation c.1765C > T (p.Arg589Trp) in XPF/ERCC4/FANCQ assign her as the third individual of complementation group FA-Q. Ectopic expression of wildtype, but not mutant, XPF/ERCC4/FANCQ, in patient-derived fibroblasts rescued cellular resistance to DNA interstrand-crosslinking agents. Patient derived FA-Q cells showed impaired nuclear excision repair capacity. However, mutated XPF/ERCC4/FANCQ protein in our patient’s cells, as in the two other patients with FA-Q, was detectable on chromatin, in contrast to XP-F cells, where missense-mutant protein failed to properly translocate to the nucleus.ConclusionsPatients with FA characteristics and UV sensitivity should be tested for mutations in XPF/ERCC4/FANCQ. The missense mutation p.Arg589Trp was previously detected in patients diagnosed with Xeroderma pigmentosum or Cockayne syndrome. Hence, phenotypic manifestations associated with this XPF/ERCC4/ FANCQ mutation are highly variable.Electronic supplementary materialThe online version of this article (10.1186/s12881-018-0520-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.