Interest in the development of electro-fluid-dynamic devices (EFDs) based on corona discharge is growing due to their advantages and applicability across different industrial sectors. On the one hand, their performance as forced convection motors, in terms of weight, volume, and absence of noise and moving parts, make them competitive against traditional systems such as fans. On the other hand, the actions of the corona discharge, in terms of elimination of viruses and bacteria, are already known. This paper studies the characteristics of corona discharge in terms of air flow for a new proposed configuration and geometry of electrodes. A systematic study is performed through a parametric study of the distances, power consumption, and size of the corona electrode. The characteristic voltage–current (CVCCs) and flow–pressure curves obtained provide design rules to use the generated corona discharge and the device itself, as a silent air propeller, which may also sterilize the surrounding environment and surfaces.
Atmospheric corona discharge devices are being studied as innovative systems for cooling, sterilization, and propulsion, in several industrial fields, from robotics to medical devices, from drones to space applications. However, their industrial scale implementation still requires additional understanding of several complex phenomena, such as corrosion, degradation, and fatigue behaviour, which may affect final system performance. This study focuses on the corrosive behaviour of wires that perform as a high-voltage electrode subject to DC positive corona discharge in atmospheric air. The experiments demonstrate that the non-thermal plasma process promotes the growth of the oxidative films and modifies the physicochemical properties of the materials chosen as corona electrodes, hence affecting device operation. Surfaces exposed to this non-thermal plasma are electrically characterized by negative exponential decay of time-depend power and analysed with SEM. Implications on performance are analysed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.