Morpholino phosphorodiamidate antisense oligonucleotides (MOs) and short interfering RNAs (siRNAs) are commonly used platforms to study gene function by sequence-specific knockdown. Both technologies, however, can elicit undesirable off-target effects. We have used several model genes to study these effects in detail in the zebrafish, Danio rerio. Using the zebrafish embryo as a template, correct and mistargeting effects are readily discernible through direct comparison of MO-injected animals with well-studied mutants. We show here indistinguishable off-targeting effects for both maternal and zygotic mRNAs and for both translational and splice-site targeting MOs. The major off-targeting effect is mediated through p53 activation, as detected through the transferase-mediated dUTP nick end labeling assay, acridine orange, and p21 transcriptional activation assays. Concurrent knockdown of p53 specifically ameliorates the cell death induced by MO off-targeting. Importantly, reversal of p53-dependent cell death by p53 knockdown does not affect specific loss of gene function, such as the cell death caused by loss of function of chordin. Interestingly, quantitative reverse-transcriptase PCR, microarrays and whole-mount in situ hybridization assays show that MO off-targeting effects are accompanied by diagnostic transcription of an N-terminal truncated p53 isoform that uses a recently recognized internal p53 promoter. We show here that MO off-targeting results in induction of a p53-dependent cell death pathway. p53 activation has also recently been shown to be an unspecified off-target effect of siRNAs. Both commonly used knockdown technologies can thus induce secondary but sequence-specific p53 activation. p53 inhibition could potentially be applicable to other systems to suppress off-target effects caused by other knockdown technologies.
Robinow syndrome is a skeletal dysplasia with both autosomal dominant and autosomal recessive inheritance patterns. It is characterized by short stature, limb shortening, genital hypoplasia and craniofacial abnormalities. The etiology of dominant Robinow syndrome is unknown, however the phenotypically more severe autosomal recessive form of Robinow syndrome has been associated with mutations in the orphan tyrosine kinase receptor, ROR2, which has recently been identified as a putative WNT5A receptor. Here we show that two different missense mutations in WNT5A, which result in amino acid substitutions of highly conserved cysteines, are associated with autosomal dominant Robinow syndrome. One mutation has been found in all living affected members of the original family described by Meinhard Robinow and another in a second unrelated patient. These missense mutations result in decreased WNT5A activity in functional assays of zebrafish and Xenopus development. This work suggests that a WNT5A/ROR2 signal transduction pathway is important in human craniofacial and skeletal development, and that proper formation and growth of these structures is sensitive to variations in WNT5A function.
Replication forks are halted by many types of DNA damage. At the site of a leading-strand DNA lesion, forks may stall and leave the lesion in a single-strand gap. Fork regression is the first step in several proposed pathways that permit repair without generating a double-strand break. Using model DNA substrates designed to mimic one of the known structures of a fork stalled at a leadingstrand lesion, we show here that RecA protein of Escherichia coli will promote a fork regression reaction in vitro. The regression process exhibits an absolute requirement for ATP hydrolysis and is enhanced when dATP replaces ATP. The reaction is not affected by the inclusion of the RecO and R proteins. We present this reaction as one of several potential RecA protein roles in the repair of stalled and͞or collapsed replication forks in bacteria.
Morpholino phosphorodiamidate antisense oligonucleotides (MOs) and short interfering RNAs (siRNAs) are commonly used platforms to study gene function by sequence-specific knockdown. Both technologies, however, can elicit undesirable off-target effects. We have used several model genes to study these effects in detail in the zebrafish, Danio rerio. Using the zebrafish embryo as a template, correct and mistargeting effects are readily discernible through direct comparison of MO-injected animals with well-studied mutants. We show here indistinguishable off-targeting effects for both maternal and zygotic mRNAs and for both translational and splice-site targeting MOs. The major off-targeting effect is mediated through p53 activation, as detected through the transferase-mediated dUTP nick end labeling assay, acridine orange, and p21 transcriptional activation assays. Concurrent knockdown of p53 specifically ameliorates the cell death induced by MO off-targeting. Importantly, reversal of p53-dependent cell death by p53 knockdown does not affect specific loss of gene function, such as the cell death caused by loss of function of chordin. Interestingly, quantitative reverse-transcriptase PCR, microarrays and whole-mount in situ hybridization assays show that MO offtargeting effects are accompanied by diagnostic transcription of an N-terminal truncated p53 isoform that uses a recently recognized internal p53 promoter. We show here that MO off-targeting results in induction of a p53dependent cell death pathway. p53 activation has also recently been shown to be an unspecified off-target effect of siRNAs. Both commonly used knockdown technologies can thus induce secondary but sequence-specific p53 activation. p53 inhibition could potentially be applicable to other systems to suppress off-target effects caused by other knockdown technologies.
BackgroundUnderstanding the functional role(s) of the more than 20,000 proteins of the vertebrate genome is a major next step in the post-genome era. The approximately 4,000 co-translationally translocated (CTT) proteins – representing the vertebrate secretome – are important for such vertebrate-critical processes as organogenesis. However, the role(s) for most of these genes is currently unknown.ResultsWe identified 585 putative full-length zebrafish CTT proteins using cross-species genomic and EST-based comparative sequence analyses. We further investigated 150 of these genes (Figure 1) for unique function using morpholino-based analysis in zebrafish embryos. 12% of the CTT protein-deficient embryos resulted in specific developmental defects, a notably higher rate of gene function annotation than the 2%–3% estimate from random gene mutagenesis studies.Conclusion(s)This initial collection includes novel genes required for the development of vascular, hematopoietic, pigmentation, and craniofacial tissues, as well as lipid metabolism, and organogenesis. This study provides a framework utilizing zebrafish for the systematic assignment of biological function in a vertebrate genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.