The transition in quantum chromodynamics (QCD) from hadronic matter to the quark-gluon plasma (QGP) at high temperatures and/or net-baryon densities is associated with the restoration of chiral symmetry and can be investigated in the laboratory via heavy-ion collisions. We study this chiral transition within the functional renormalization group (FRG) approach applied to the two-flavor version of the extended Linear Sigma Model (eLSM). The eLSM is an effective model for the strong interaction and features besides scalar and pseudoscalar degrees of freedom also vector and axialvector mesons. We discuss the impact of the quark masses and the axial anomaly on the order of the chiral transition. We also confirm the degeneracy of the masses of chiral partners above the transition temperature. We find that the mass of the a1 meson (ρ meson) decreases (increases) towards the chiral transition.
We study the restoration of spontaneously broken symmetry at nonzero temperature in the framework of the O(2) model using polar coordinates. We apply the CJT formalism to calculate the masses and the condensate in the double-bubble approximation, both with and without a term that explicitly breaks the O(2) symmetry. We find that, in the case with explicitly broken symmetry, the mass of the angular degree of freedom becomes tachyonic above a temperature of about 300 MeV. Taking the term that explicitly breaks the symmetry to be infinitesimally small, we find that the Goldstone theorem is respected below the critical temperature. However, this limit cannot be performed for temperatures above the phase transition. We find that, no matter whether we break the symmetry explicitly or not, there is no region of temperature in which the radial and the angular degree of freedom become degenerate in mass. These results hold also when the mass of the radial mode is sent to infinity.
The existence of an U (2)A × U (2)V -symmetric fixed point in the chiral linear sigma model is confirmed using the Functional Renormalization Group (FRG). Its stability properties and the implications for the order of the chiral phase transition of two-flavor quantum chromodynamics (QCD) are discussed. Furthermore, several technical conclusions are drawn from the comparison with the results of resummed loop expansions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.