Custom made macroporous β‐tricalcium phosphate (β‐TCP) bone substitutes were fabricated using 3D powder printing comparing three different preparation strategies. Samples fabricated using a novel hydraulic cement setting reaction showed the best printing resolution and highest mechanical performance. This method is a significant step forward in producing β‐TCP monoliths by rapid prototyping and would decrease processing time for commercial fabrication due to their rapid hardening and ease of handling.
The synthesis of important classes of chemical compounds from alcohols helps to conserve Earth’s fossil carbon resources, since alcohols can be obtained from indigestible and abundantly available biomass. The utilisation of visible light for the activation of alcohols permits alcohol-based C–N and C–C bond formation under mild conditions inaccessible with thermally operating hydrogen liberation catalysts. Herein, we report on a noble metal-free photocatalyst able to split alcohols into hydrogen and carbonyl compounds under inert gas atmosphere without the requirement of electron donors, additives, or aqueous reaction media. The reusable photocatalyst mediates C–N multiple bond formation using the oxidation of alcohols and subsequent coupling with amines. The photocatalyst consists of a CdS/TiO2 heterojunction decorated with co-catalytic Ni nanoparticles and is prepared on size-optimised colloidal metal–organic framework (MOF) crystallites.
The design of nanostructured catalysts based on earth-abundant metals that mediate important reactions efficiently, selectively and with a broad scope is highly desirable. Unfortunately, the synthesis of such catalysts is poorly understood. We report here on highly active Ni catalysts for the reductive amination of ketones by ammonia employing hydrogen as a reducing agent. The key functions of the Ni-salen precursor complex during catalyst synthesis have been identi-fied: (1) Ni-salen complexes sublime during catalyst synthesis, which allows molecular dispersion of the metal precursor on the support material. (2) The salen ligand forms a nitrogendoped carbon shell by decomposition, which embeds and stabilizes the Ni nanoparticles on the γ-Al 2 O 3 support. (3) Paarameters, such as flow rate of the pyrolysis gas, determine the carbon supply for the embedding process of Ni nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.