Internucleosomal DNA fragmentation following the activation of endonucleases is the common end point of apoptosis. DNase I, a Ca2+ / Mg2+‐dependent endonuclease ubiquitously expressed in mammalian tissues, is believed to play a role in this process. To analyze the in vivo function of this enzyme in human cells, we have generated a cell line with targeted disruption of the DNase I gene, as well as several stable cell lines which overexpress the DNase I gene. Inactivation of the human DNase I gene was obtained in the Jurkat T cell clone JA3, characterized by high susceptibility to apoptotic cell death induced by pharmacological stimuli. JA3 cells, after disruption of the DNase I gene, became resistant to apoptotic stimuli. DNase I was overexpressed in the human cell lines JA3, K562 (erythroleukemia), M 14 (melanoma) and CEM (T cell lymphoma). Remarkably, stable overexpression of DNase I gene resulted in accelerated apoptosis in JA3 cells and induced apoptosis in K562, CEM and M14 cell lines, which are otherwise resistant to internucleosomal DNA degradation following pharmacological stimuli. Our study provides the first in vivo evidence that DNase I mediates internucleosomal DNA degradation in human cells undergoing drug‐induced apoptosis.
Stunted growth is a common complication of childhood diseases characterized by chronic inflammation or infections.We previously demonstrated that NSE/hIL-6 transgenic mice, overexpressing the inflammatory cytokine IL-6 since early phase of life, showed a marked growth defect associated with decreased IGF-I levels, suggesting that IL-6 is one of the factors involved in stunted growth complicating chronic inflammation in childhood. Here we show that NSE/hIL-6 mice have normal liver IGF-I production, decreased levels of IGF bind-
Non-coeliac/non-allergic gluten/wheat sensitivity (NCG/WS) is a gluten-related disorder, the pathogenesis of which remains unclear. Recently, the involvement of an increased intestinal permeability has been recognized in the onset of this clinical condition. However, mechanisms through which it takes place are still unclear. In this review, we attempt to uncover these mechanisms by providing, for the first time, an integrated vision of recent scientific literature, resulting in a new hypothesis about the pathogenic mechanisms involved in NCG/WS. According to this, the root cause of NCG/WS is a particular dysbiotic profile characterized by decreased butyrate-producing-Firmicutes and/or Bifidobacteria, leading to low levels of intestinal butyrate. Beyond a critical threshold of the latter, a chain reaction of events and vicious circles occurs, involving other protagonists such as microbial lipopolysaccharide (LPS), intestinal alkaline phosphatase (IAP) and wheat α-amylase trypsin inhibitors (ATIs). NCG/WS is likely to be a multi-factor-onset disorder, probably transient and preventable, related to quality and balance of the diet, and not to the presence of gluten in itself. If future studies confirm our proposal, this would have important implications both for the definition of the disease, as well as for the prevention and therapeutic-nutritional management of individuals with NCG/WS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.