Null cyclic -1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abortus S19 cgs mutant was completely cleared from the spleens of mice after 4 weeks, while the 2308 mutant showed a 1.5-log reduction of the number of brucellae isolated from the spleens after 12 weeks. These results suggest that cyclic -1,2-glucan plays an important role in the residual virulence of the attenuated B. abortus S19 strain. Although the cgs mutant was cleared from the spleens earlier than the wild-type parental strain (B. abortus S19) and produced less inflammatory response, its ability to confer protection against the virulent strain B. abortus 2308 was fully retained. Equivalent levels of induction of spleen gamma interferon mRNA and anti-lipopolysaccharide (LPS) of immunoglobulin G2a (IgG2a) subtype antibodies were observed in mice injected with B. abortus S19 or the cgs mutant. However, the titer of anti-LPS antibodies of the IgG1 subtype induced by the cgs mutant was lower than that observed with the parental S19 strain, thus suggesting that the cgs mutant induces a relatively exclusive Th1 response.Brucella abortus is an intracellular pathogen that causes abortion in bovines and can infect humans. Abortion in cattle is the consequence of the tropism that the bacterium has for the placenta of pregnant animals, in which it multiplies intracellularly (10). Brucellosis in humans is primarily a disease of the reticuloendothelial system, in which the bacteria multiply inside the phagocytic cell; the intermittent release of bacteria from the cells into the bloodstream causes undulant fever (17, 29). Brucellosis does not spread among humans; consequently, eradication of the disease from the natural reservoirs, cattle, pigs, sheep, goats, and other susceptible animals, will lead to elimination of human infection. In regions with high prevalence of the disease, the only way of controlling and eventually eradicating this zoonosis is by vaccination of all susceptible hosts and elimination of infected animals.Vaccination represents an important tool for the control of bovine brucellosis. One of the most used vaccines is the attenuated strain B. abortus S19 obtained spontaneously from the virulent strain B. abortus 2308 (24, 25, 26, 29). Live attenuated B. abortus S19 has served for many years as an effective vaccine to prevent brucellosis in cattle (8,18). The genetic defect that leads to attenuation of this strain has not yet been defined. B. abortus S19 has lost some essential unknown mechanism of virulence. Despite this fact, the vaccinal strain conserves some degree of virulence, being pathogenic for humans (37), and...
Brucella periplasmic cyclic -1,2-glucan plays an important role during bacterium-host interaction. Nuclear magnetic resonance spectrometry analysis, thin-layer chromatography, and DEAE-Sephadex chromatography were used to characterize Brucella abortus cyclic glucan. In the present study, we report that a fraction of B. abortus cyclic -1,2-glucan is substituted with succinyl residues, which confer anionic character on the cyclic -1,2-glucan. The oligosaccharide backbone is substituted at C-6 positions with an average of two succinyl residues per glucan molecule. This O-ester-linked succinyl residue is the only substituent of Brucella cyclic glucan. A B. abortus open reading frame (BAB1_1718) homologous to Rhodobacter sphaeroides glucan succinyltransferase (OpgC) was identified as the gene encoding the enzyme responsible for cyclic glucan modification. This gene was named cgm for cyclic glucan modifier and is highly conserved in Brucella melitensis and Brucella suis. Nucleotide sequencing revealed that B. abortus cgm consists of a 1,182-bp open reading frame coding for a predicted membrane protein of 393 amino acid residues (42.7 kDa) 39% identical to Rhodobacter sphaeroides succinyltransferase. cgm null mutants in B. abortus strains 2308 and S19 produced neutral glucans without succinyl residues, confirming the identity of this protein as the cyclic-glucan succinyltransferase enzyme. In this study, we demonstrate that succinyl substituents of cyclic -1,2-glucan of B. abortus are necessary for hypo-osmotic adaptation. On the other hand, intracellular multiplication and mouse spleen colonization are not affected in cgm mutants, indicating that cyclic--1,2-glucan succinylation is not required for virulence and suggesting that no lowosmotic stress conditions must be overcome during infection.Brucella spp. are gram-negative, facultative intracellular bacteria that cause a chronic zoonotic disease known worldwide as brucellosis. Brucella abortus, the etiological agent of bovine brucellosis, causes abortion and infertility in cattle and undulant fever in humans (17). The human disease is also caused by Brucella melitensis, Brucella suis, and Brucella canis. Brucella spp. are intracellular pathogens that invade and proliferate within host cells; virulence is associated with the ability to multiply inside professional and nonprofessional phagocytic cells (40).Cyclic glucans appear to be important as intrinsic components of gram-negative bacterial cell envelopes (7). Beyond their common features, glucans show an unexpected structural diversity (4). The role of cyclic glucan in gram-negative bacterial cell envelopes is still controversial. Cyclic-glucan mutants have a highly pleiotropic phenotype, suggesting an overall alteration of their cell envelope properties. Mutants deficient in cyclic-glucan production were found to be attenuated or avirulent compared to their wild-type parent strains, suggesting that the cyclic glucan is an important virulence attribute for the bacteria in their interaction with eukaryotic host...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.