Enhanced salt weathering resulting from global warming and increasing environmental pollution is endangering the survival of stone monuments and artworks. To mitigate the effects of these deleterious processes, numerous conservation treatments have been applied that, however, show limited efficacy. Here we present a novel, environmentally friendly, bacterial self-inoculation approach for the conservation of stone, based on the isolation of an indigenous community of carbonatogenic bacteria from salt damaged stone, followed by their culture and re-application back onto the same stone. This method results in an effective consolidation and protection due to the formation of an abundant and exceptionally strong hybrid cement consisting of nanostructured bacterial CaCO3 and bacterially derived organics, and the passivating effect of bacterial exopolymeric substances (EPS) covering the substrate. The fact that the isolated and identified bacterial community is common to many stone artworks may enable worldwide application of this novel conservation methodology.
Pressure exerted by crystallization of salts within porous materials contributes to damage in historic and modern construction. By unequivocally identifying the precipitating phase(s) while simultaneously determining solution supersaturation and associated crystallization pressure in subsurface pores, we show that the formation of a thermodynamically metastable salt phase (heptahydrate; Na2SO4·7H2O) and the resulting transition to a less soluble stable phase (mirabilite; Na2SO4·10H2O) is largely responsible for the high supersaturation and crystallization pressure developed during evaporative crystallization of sodium sulfate, the most damaging salt known. These results help to explain why salts with various (stable and metastable) hydrated phases are the most damaging. We also show that damage associated with metastable-stable phase transitions can be suppressed by the use of crystallization promoters. These results open new ways for the prevention of salt damage to building materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.