Nicotianamine chelates and transports micronutrient metal ions in plants. It has been speculated that nicotianamine is involved in seed loading with micronutrients. A tomato (Solanum lycopersicum) mutant (chloronerva) and a tobacco (Nicotiana tabacum) transgenic line have been utilized to analyze the effects of nicotianamine loss. These mutants showed early leaf chlorosis and had sterile flowers. Arabidopsis (Arabidopsis thaliana) has four NICOTIANAMINE SYNTHASE (NAS) genes. We constructed two quadruple nas mutants: one had full loss of NAS function, was sterile, and showed a chloronerva-like phenotype (nas4x-2); another mutant, with intermediate phenotype (nas4x-1), developed chlorotic leaves, which became severe upon transition from the vegetative to the reproductive phase and upon iron (Fe) deficiency. Residual nicotianamine levels were sufficient to sustain the life cycle. Therefore, the nas4x-1 mutant enabled us to study late nicotianamine functions. This mutant had no detectable nicotianamine in rosette leaves of the reproductive stage but low nicotianamine levels in vegetative rosette leaves and seeds. Fe accumulated in the rosette leaves, while less Fe was present in flowers and seeds. Leaves, roots, and flowers showed symptoms of Fe deficiency, whereas leaves also showed signs of sufficient Fe supply, as revealed by molecular-physiological analysis. The mutant was not able to fully mobilize Fe to sustain Fe supply of flowers and seeds in the normal way. Thus, nicotianamine is needed for correct supply of seeds with Fe. These results are fundamental for plant manipulation approaches to modify Fe homeostasis regulation through alterations of NAS genes.
The metal chelator nicotianamine promotes the bioavailability of Fe and reduces cellular Fe toxicity. For breeding Fe-efficient crops, we need to explore the fundamental impact of nicotianamine on plant development and physiology. The quadruple nas4x-2 mutant of Arabidopsis thaliana cannot synthesize any nicotianamine, shows strong leaf chlorosis, and is sterile. To date, these phenotypes have not been fully explained. Here, we show that sink organs of this mutant were Fe deficient, while aged leaves were Fe sufficient. Upper organs were also Zn deficient. We demonstrate that transport of Fe to aged leaves relied on citrate, which partially complemented the loss of nicotianamine. In the absence of nicotianamine, Fe accumulated in the phloem. Our results show that rather than enabling the long-distance movement of Fe in the phloem (as is the case for Zn), nicotianamine facilitates the transport of Fe from the phloem to sink organs. We delimit nicotianamine function in plant reproductive biology and demonstrate that nicotianamine acts in pollen development in anthers and pollen tube passage in the carpels. Since Fe and Zn both enhance pollen germination, a lack of either metal may contribute to the reproductive defect. Our study sheds light on the physiological functions of nicotianamine.
These authors contributed equally to this work. SUMMARYC 4 photosynthetic plants outperform C 3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C 4 plants drastically reduce photorespiration. The frequency with which plants evolved C 4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C 3 crops, such as rice, towards C 4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C 4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C 4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C 4 pathway, we propose a simplified rational engineering model exclusively built with known C 4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.