The ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [BMP][TFSA] is a promising candidate for improved nextgeneration rechargeable lithium−ion batteries. We here report results of a model study of the reactive interaction of (sub-)monolayers and multilayers of [BMP][TFSA] with lithium (Li) on Cu(111), employing scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIRS) under ultrahigh vacuum (UHV) conditions. Upon post-deposition of Li on [BMP][TFSA] multilayers at 80 K, we identified changes in the chemical state of the [TFSA] anion and the [BMP] cation as well as in the IR absorption bands related to the anion. These changes are most likely due to the decomposition of the IL adlayer into a variety of products like LiF, Li 2 S, and Li 2 O upon anion decomposition and LiN 3 , LiC x H y N, and Li x CH y upon cation decomposition, where the latter includes cracking of the pyrrolidinium ring. Deposition of Li on [BMP][TFSA] (sub-)monolayer-covered surfaces led to similar decomposition patterns, and the same was also observed for the reverse deposition order. The addition of the corresponding amounts of Li to a [BMP][TFSA] adlayer resulted in distinct changes in the STM images, which must be due to the surface reaction. After annealing to 300 K, the core-level peaks of the cation lose most of their peak area. Upon further heating to 450 K, the anion is nearly completely decomposed, resulting in LiF and Li 2 S decomposition products that dominate the interface.
The reactive interaction of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [BMP][TFSA] with Cu(111) was investigated by scanning tunnelling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) under ultrahigh vacuum (UHV) conditions. Decomposition between 300 K and 350 K is manifested by changes in the surface structure monitored with STM. XPS reveals that mainly the [TFSA] anion is decomposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.