In this study, we have investigated the freezing delay of a water droplet on precooled substrates of an aluminum alloy that is commonly used for heat-exchanger fins. The surfaces of the substrates were modified to obtain surfaces with different hydrophilicity/hydrophobicity and different surface chemistry but without significantly modifying the surface topography. The freezing delays and water contact angles were measured as a function of the substrate temperature and the results were compared to the predictions of the heterogeneous ice nucleation theory. Although the trends for each sample followed the trend in this theory, the differences in the extents of freezing delays were in apparent disagreement with the predictions. Concretely, a slightly hydrophilic substrate modified by (3-aminopropyl) triethoxysilane (APTES) showed longer freezing delays than both more hydrophilic and more hydrophobic substrates. We suggest that this is because this particular surface chemistry prevents ice formation at the interface of the substrate, prior to the deposition of the water droplet. On the basis of our results, we suggest that not only wettability and topography but also the concrete surface chemistry plays a significant role in the kinetics of the ice formation process when a water droplet is placed on a precooled substrate.
Aluminium alloys are the predominant materials in modern industries. Increased knowledge about the surface characteristics of bare aluminium can enhance the understanding about how to optimize the working conditions for the equipment involving aluminium parts. This work focusses on the properties of native surface of aluminium alloy 8011, which is the main construction material for the production of air-to-air heat exchanger fins. In this study, we address its water wettability, surface roughness and frost formation in different psychometric parameters. The contact angle measurements revealed that this aluminium alloy exhibits a relatively high contact angle of about 78 degree, i.e. is not wetted completely. AFM measurements revealed significant surface roughness of typical heat exchanger fins. The thickness of formed frost was studied in relation to the wettability, humidity and the cold surface temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.