A new mixed-integer nonlinear programming model is presented for the time-dependent vehicle routing problem with time windows and intelligent travel times. The aim is to minimize fixed and variable costs, with the assumption that the travel time between any two nodes depends on traffic conditions and is considered to be a function of vehicle departure time. Depending on working hours, the route between any two nodes has a unique traffic parameter. We consider each working day to be divided into several equal and large intervals, termed as a scenario. Here, allowing for long distances between some of the nodes, travel time may take more than one scenario, resulting in resetting the scenario at the start of each large interval. This repetition of scenarios has been used in modeling and calculating travel time. A tabu search optimization algorithm is devised for solving large problems. Also, after linearization, a number of random instances are generated and solved by the CPLEX solver of GAMS to assess the effectiveness of our proposed algorithm. Results indicate that the initial travel time is estimated appropriately and updated properly in accordance with to the repeating traffic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.