This paper implemented a new skin lesion detection method based on the genetic algorithm (GA) for optimizing the neutrosophic set (NS) operation to reduce the indeterminacy on the dermoscopy images. Then, k-means clustering is applied to segment the skin lesion regions. Therefore, the proposed method is called optimized neutrosophic k-means (ONKM). On the training images set, an initial value of α in the α-mean operation of the NS is used with the GA to determine the optimized α value. The Jaccard index is used as the fitness function during the optimization process. The GA found the optimal α in the α-mean operation as α optimal = 0.0014 in the NS, which achieved the best performance using five fold cross-validation. Afterward, the dermoscopy images are transformed into the neutrosophic domain via three memberships, namely true, indeterminate, and false, using α optimal. The proposed ONKM method is carried out to segment the dermoscopy images. Different random subsets of 50 images from the ISIC 2016 challenge dataset are used from the training dataset during the fivefold cross-validation to train the proposed system and determine α optimal. Several evaluation metrics, namely the Dice coefficient, specificity, sensitivity, and accuracy, are measured for performance evaluation of the test images using the proposed ONKM method with α optimal = 0.0014 compared to the k-means, and the γ-k-means methods. The results depicted the dominance of the ONKM method with 99.29 ± 1.61% average accuracy compared with k-means and γ-k-means methods.
Self-powered or autonomously driven wearable devices are touted to revolutionize the personalized healthcare industry, promising sustainable medical care for a large population of healthcare seekers. Current wearable devices rely on batteries for providing the necessary energy to the various electronic components. However, to ensure continuous and uninterrupted operation, these wearable devices need to scavenge energy from their surroundings. Different energy sources have been used to power wearable devices. These include predictable energy sources such as solar energy and radio frequency, as well as unpredictable energy from the human body. Nevertheless, these energy sources are either intermittent or deliver low power densities. Therefore, being able to predict or forecast the amount of harvestable energy over time enables the wearable to intelligently manage and plan its own energy resources more effectively. Several prediction approaches have been proposed in the context of energy harvesting wireless sensor network (EH-WSN) nodes. In their architectural design, these nodes are very similar to self-powered wearable devices. However, additional factors need to be considered to ensure a deeper market penetration of truly autonomous wearables for healthcare applications, which include low-cost, low-power, small-size, high-performance and lightweight. In this paper, we review the energy prediction approaches that were originally proposed for EH-WSN nodes and critique their application in wearable healthcare devices. Our comparison is based on their prediction accuracy, memory requirement, and execution time. We conclude that statistical techniques are better designed to meet the needs of short-term predictions, while long-term predictions require the hybridization of several linear and non-linear machine learning techniques. In addition to the recommendations, we discuss the challenges and future perspectives of these technique in our review.
The medical and scientific communities are currently trying to treat infected patients and develop vaccines for preventing a future outbreak. In healthcare, machine learning is proven to be an efficient technology for helping to combat the COVID-19. Hospitals are now overwhelmed with the increased infections of COVID-19 cases and given patients’ confidentiality and rights. It becomes hard to assemble quality medical image datasets in a timely manner. For COVID-19 diagnosis, several traditional computer-aided detection systems based on classification techniques were proposed. The bag-of-features (BoF) model has shown a promising potential in this domain. Thus, this work developed an ensemble-based BoF classification system for the COVID-19 detection. In this model, we proposed ensemble at the classification step of the BoF. The proposed system was evaluated and compared to different classification systems for different number of visual words to evaluate their effect on the classification efficiency. The results proved the superiority of the proposed ensemble-based BoF for the classification of normal and COVID19 chest X-ray (CXR) images compared to other classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.