Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre -including this research content -immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
To mitigate the spread of the current coronavirus disease 2019 (COVID-19) pandemic, it is crucial to have an effective screening of infected patients to be isolated and treated. Chest X-Ray (CXR) radiological imaging coupled with Artificial Intelligence (AI) applications, in particular Convolutional Neural Network (CNN), can speed the COVID-19 diagnostic process. In this paper, we optimize the data augmentation and the CNN hyperparameters for detecting COVID-19 from CXRs in terms of validation accuracy. This optimization increases the accuracy of the popular CNN architectures such as the Visual Geometry Group network (VGG-19) and the Residual Neural Network (ResNet-50), by 11.93% and 4.97%, respectively. We then proposed CovidXrayNet model that is based on EfficientNet-B0 and our optimization results. We evaluated CovidXrayNet on two datasets, including our generated balanced COVIDcxr dataset (960 CXRs) and the benchmark COVIDx dataset (15,496 CXRs). With only 30 epochs of training, CovidXrayNet achieves state-of-the-art accuracy of 95.82% on the COVIDx dataset in the three-class classification task (COVID-19, normal or pneumonia). The CovidXRayNet model, the COVIDcxr dataset, and several optimization experiments are publicly available at
https://github.com/MaramMonshi/CovidXrayNet
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.