Gene recruitment or cooption occurs when a gene, which may be part of an existing gene regulatory network (GRN), comes under the control of a new regulatory system. Such re-arrangement of pre-existing networks is likely more common for increasing genomic complexity than the creation of new genes. Using evolutionary computations (EC), we investigate how cooption affects the evolvability, outgrowth and robustness of GRNs. We use a data-driven model of insect segmentation, for the fruit fly Drosophila, and evaluate fitness by robustness to maternal variability—a major constraint in biological development. We compare two mechanisms of gene cooption: a simpler one with gene Introduction and Withdrawal operators; and one in which GRN elements can be altered by transposon infection. Starting from a minimal 2-gene network, insufficient for fitting the Drosophila gene expression patterns, we find a general trend of coopting available genes into the GRN, in order to better fit the data. With the transposon mechanism, we find co-evolutionary oscillations between genes and their transposons. These oscillations may offer a new technique in EC for overcoming premature convergence. Finally, we comment on how a differential equations (in contrast to Boolean) approach is necessary for addressing realistic continuous variation in biochemical parameters.
Biological development depends on the coordinated expression of genes in time and space. Developmental genes have extensive cis-regulatory regions which control their expression. These regions are organized in a modular manner, with different modules controlling expression at different times and locations. Both how modularity evolved and what function it serves are open questions. We present a computational model for the cis-regulation of the hunchback (hb) gene in the fruit fly (Drosophila). We simulate evolution (using an evolutionary computation approach from computer science) to find the optimal cis-regulatory arrangements for fitting experimental hb expression patterns. We find that the cis-regulatory region tends to readily evolve modularity. These cis-regulatory modules (CRMs) do not tend to control single spatial domains, but show a multi-CRM/multi-domain correspondence. We find that the CRM-domain correspondence seen in Drosophila evolves with a high probability in our model, supporting the biological relevance of the approach. The partial redundancy resulting from multi-CRM control may confer some biological robustness against corruption of regulatory sequences. The technique developed on hb could readily be applied to other multi-CRM developmental genes.
Traditionally, the evolution of flora and fauna on the Earth as well as the evolution of their physical and chemical environment are considered separately. At the same time, when considering the global evolutionary changes, it becomes clear that the evolution of all these components occurs in close relationship and that they together constitute a unified evolutionary process. Thus, we should talk about their co-evolution and that the whole biosphere is a united functional system. In this chapter, we briefly discuss some of the major "inventions" of ancient life that are responsible for global biosphere transformations and which "worked" in the biosphere until now (photosynthesis, eukaryotic cell, multicellular organism, and the other findings). The evolution of the Precambrian life as well as the Phanerozoic stage of the biosphere evolution are considered in this context.
In recent years, there has been growing interest in computer modeling of the evolution of gene and cell regulatory networks, in general, and in computational studies of the classic ideas of Baldwin, Schmalhausen, Waddington, and followers, in particular. Two related aspects of Waddington's evolutionary theories are the concepts of canalization and of genetic assimilation. Canalization is associated with the robust development of an individual to diverse perturbations and noise, though, when fluctuations in developmental factors exceed a particular limit, the normal developmental trajectory can be "thrown out" of the robust canal, resulting in an altered phenotype. If selective pressure favors the new phenotype, an initial individual loss of canalization can lead to phenotypic changes in the population (with canalization then becoming established for the new phenotype). Genetic assimilation is the subsequent genetic fixing of the new trait in the population. Recent experimental and theoretical works have established a quantitative basis for these classic concepts of Waddington; this chapter will review these new developments in systems evolutionary biology.Keywords: canalization, genetic assimilation, gene networks, computer modeling, systems evolutionary biology Canalization and genetic assimilationComputational studies of the classic concepts of Ivan Schmalhausen [1], Conrad Waddington [2], and their contemporaries (Rendel [3]) have become a major area in evolutionary theory in recent years. A number of these concepts from the 1950s have had a major impact on the evolutionary theory of development, and computation allows for quantitative testing and characterization of the ideas. Here, we review recent work on canalization, whereby species show low phenotypic variation, despite ample genetic and environmental variation (also termed "robustness"), and on genetic assimilation, in which a phenotypic change induced by an environmental perturbation becomes stabilized in the genotype.Canalization captures the observation that most developmental phenotypes display a certain degree of stability, despite environmental or genetic perturbations (Figure 1). However, for new phenotypes to arise, there must be a limit to this robustness, such that a large enough perturbation will knock the developmental trajectory out of the robust canal, resulting in a new phenotype. If this new phenotype represents higher fitness, it can be reinforced by genetic assimilation (Figure 2).Waddington did a number of perturbation experiments in Drosophila (fruit fly) development to characterize such canalization (robustness) and show its underlying genetic basis. In those times Waddington preferred to use simple perturbations of environmental parameters and conditions, such as exposing flies to diethyl ether [5], high sodium chloride concentrations [6], or heat shock (40 C) [7]. Later, other authors have used mutations in key developmental genes as the perturbations [8,9]. More recent approaches include genetically engineered organisms ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.