This is a review of quantum methods for machine learning problems that consists of two parts. The first part, "quantum tools", presents the fundamentals of qubits, quantum registers, and quantum states, introduces important quantum tools based on known quantum search algorithms and SWAP-test, and discusses the basic quantum procedures used for quantum search methods. The second part, "quantum classification algorithms", introduces several classification problems that can be accelerated by using quantum subroutines and discusses the quantum methods used for classification.
Automata and branching programs are known models of computation with restricted memory. These models of computation were in focus of a large number of researchers during the last decades. Streaming algorithms are a modern model of computation with restricted memory. In this paper, we present recent results on the comparative computational power of quantum and classical models of branching programs and streaming algorithms. In addition to comparative complexity results, we present a quantum branching program for computing a practically important quantum function (quantum hash function) and prove optimality of this algorithm.
In the paper, we define the concept of the quantum hash generator and offer design, which allows to build a large amount of different quantum hash functions. The construction is based on composition of classical -universal hash family and a given family of functions-quantum hash generator. In particular, using the relationship between -universal hash families and Freivalds fingerprinting schemas we present explicit quantum hash function and prove that this construction is optimal in the sense of number of qubits needed for construction.
This is a review of quantum methods for machine learning problems that consists of two parts. The first part, "quantum tools", presented some of the fundamentals and introduced several quantum tools based on known quantum search algorithms. This second part of the review presents several classification problems in machine learning that can be accelerated with quantum subroutines. We have chosen supervised learning tasks as typical classification problems to illustrate the use of quantum methods for classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.