Background: Until recently, young people in Kazakhstan have been only moderately affected by the global HIV epidemic. Today, however, the HIV epidemic in Central Asia is one of the most rapidly increasing epidemics in the world. It is mainly concentrated to vulnerable groups such as intravenous drug users, sex workers, the purchasers of sexual services and the financially marginalized. Young, sexually active people may however be the gateway for the epidemic to the general population, and knowledge about their attitudes and behavior is therefore important in planning preventive measures.
Background: Central Asia has one of the most rapidly increasing HIV prevalence in the world. The aim of this study was to evaluate current knowledge, risk behaviour and attitudes to voluntary counselling and testing concerning HIV/AIDS among pregnant women in Semey, Kazakhstan.
To evaluate current environmental contamination and contributions from internal and external exposure due to the accident at the Chernobyl Nuclear Power Plant (CNPP) and nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), concentrations of artificial radionuclides in edible mushrooms, soils and stones from each area were analyzed by gamma spectrometry. Annual effective doses were calculated for each area from the cesium contamination. Calculated internal effective doses of (137)Cs due to ingestion of mushrooms were 1.8 × 10(-1) mSv/year (y) in Gomel city (around CNPP), 1.7 × 10(-1) mSv/y in Korosten city (around CNPP), 2.8 × 10(-4) mSv/y in Semipalatinsk city, and 1.3 × 10(-4) mSv/y in Nagasaki. Calculated external effective doses of (137)Cs were 3.4 × 10(-2) mSv/y in Gomel city, 6.2 × 10(-2) mSv/y in Korosten city, 2.0 × 10(-4) mSv/y in Semipalatinsk city, and 1.3 × 10(-4) mSv/y in Nagasaki. Distribution of radionuclides in stones collected beside Lake Balapan (in SNTS) were (241)Am (49.4 ± 1.4 Bq/kg), (137)Cs (406.3 ± 1.7 Bq/kg), (58)Co (3.2 ± 0.5 Bq/kg), and (60)Co (125.9 ± 1.1 and 126.1 ± 1.1 Bq/kg). The present study revealed that dose rates from internal and external exposure around CNPP were not sufficiently low and radiation exposure potency still exists even though current levels are below the public dose limit of 1 mSv/y (ICRP1991). Moreover, parts of the SNTS area may be still contaminated by artificial radionuclides derived from nuclear tests. Long-term follow-up of environmental monitoring around CNPP and SNTS, as well as evaluation of health effects in the population residing around these areas, may contribute to radiation safety with a reduction of unnecessary exposure of residents.
For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides (241Am, 134Cs, 137Cs, and 60Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides (241Am, 57Co, 137Cs, 95Zr, 95Nb, 58Co, and 60Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.