This article revisits the topic of two-state option pricing. It examines the models developed by Cox, Ross, and Rubinstein (1979), Rendleman and Bartter (1979), and Trigeorgis (1991) and presents two alternative binomial models based on the continuous-time and discrete-time geometric Brownian motion processes, respectively. This work generalizes the standard binomial approach, incorporating the main existing models as particular cases. The proposed models are straightforward and flexible, accommodate any drift condition, and afford additional insights into binomial trees and lattice models in general. Furthermore, the alternative parameterizations are free of the negative aspects associated with the Cox, Ross, and Rubinstein model.
This paper presents an alternative approach for interest rate lattice construction in the Ritchken and Sankarasubramanian (1995) framework. The proposed method applies a parsimonious induction technique to represent the distribution of auxiliary state variables and value interest rate derivatives. In contrast to other approaches, this technique requires no numerical interpolations, approximations and iterative procedures for pricing interest rate options using a simple backward induction and, therefore, provides significant computational advantages and flexibility with respect to existing implementations. Also, the proposed trinomial interest rate lattice specification provides for a further reduction in computational costs with additional flexibility. The results of this work can be extended to a class of derivatives pricing models with path dependent state variables and generalized to multi-factor models. Copyright Springer Science + Business Media, Inc. 2005induction, multi-state-variable Markov process, trinomial lattice, derivatives valuation,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.