High-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of thousands of novel transcripts, even in well-annotated mammalian species. The advances in sequencing technology have created a need for studies and tools that can characterize these novel variants. Here, we present SQANTI, an automated pipeline for the classification of long-read transcripts that can assess the quality of data and the preprocessing pipeline using 47 unique descriptors. We apply SQANTI to a neuronal mouse transcriptome using Pacific Biosciences (PacBio) long reads and illustrate how the tool is effective in characterizing and describing the composition of the full-length transcriptome. We perform extensive evaluation of ToFU PacBio transcripts by PCR to reveal that an important number of the novel transcripts are technical artifacts of the sequencing approach and that SQANTI quality descriptors can be used to engineer a filtering strategy to remove them. Most novel transcripts in this curated transcriptome are novel combinations of existing splice sites, resulting more frequently in novel ORFs than novel UTRs, and are enriched in both general metabolic and neural-specific functions. We show that these new transcripts have a major impact in the correct quantification of transcript levels by state-of-the-art short-read-based quantification algorithms. By comparing our iso-transcriptome with public proteomics databases, we find that alternative isoforms are elusive to proteogenomics detection. SQANTI allows the user to maximize the analytical outcome of long-read technologies by providing the tools to deliver quality-evaluated and curated full-length transcriptomes.
(292 words) 22High-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of 23 thousands of novel transcripts, even in very well annotated organisms as mice and humans. Nonetheless, there is a 24 need for studies and tools that characterize these novel isoforms. Here we present SQANTI, an automated pipeline 25 for the classification of long-read transcripts that computes 47 descriptors that can be used to assess the quality of 26 the data and of the preprocessing pipelines. We applied SQANTI to a neuronal mouse transcriptome using PacBio 27 long reads and illustrate how the tool is effective in readily describing the composition of and characterizing the full-28 length transcriptome. We perform extensive evaluation of ToFU PacBio transcripts by PCR to reveal that an 29 important number of the novel transcripts are technical artifacts of the sequencing approach, and that SQANTI 30 quality descriptors can be used to engineer a filtering strategy to remove them. Most novel transcripts in this curated 31 transcriptome are novel combinations of existing splice sites, result more frequently in novel ORFs than novel UTRs 32 and are enriched in both general metabolic and neural specific functions. We show that these new transcripts have a 33 major impact in the correct quantification of transcript levels by state-of-the-art short-read based quantification 34 algorithms. By comparing our iso-transcriptome with public proteomics databases we find that alternative isoforms
MnmE is an evolutionarily conserved, three domain GTPase involved in tRNA modification. In contrast to Ras proteins, MnmE exhibits a high intrinsic GTPase activity and requires GTP hydrolysis to be functionally active. Its G domain conserves the GTPase activity of the full protein, and thus, it should contain the catalytic residues responsible for this activity. In this work, mutational analysis of all conserved arginine residues of the MnmE G-domain indicates that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis. In addition, we show that residues in the G2 motif ( 249 GTTRD 253 ), which resides in the switch I region, are not important for GTP binding but play some role in stabilizing the transition state, specially Gly 249 and Thr 251 . On the other hand, G2 mutations leading to a minor loss of the GTPase activity result in a non-functional MnmE protein. This indicates that GTP hydrolysis is a required but non-sufficient condition so that MnmE can mediate modification of tRNA. The conformational change of the switch I region associated with GTP hydrolysis seems to be crucial for the function of MnmE, and the invariant threonine (Thr 251 ) of the G2 motif would be essential for such a change, because it cannot be substituted by serine. MnmE defects result in impaired growth, a condition that is exacerbated when defects in other genes involved in the decoding process are simultaneously present. This behavior is reminiscent to that found in yeast and stresses the importance of tRNA modification for gene expression.
Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological treatment for wound-healing and tissue regeneration in dolphins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.