Mercury is a potent neurotoxin for humans, particularly if the metal is in the form of methylmercury. Mercury is widely distributed in aquatic ecosystems as a result of anthropogenic activities and natural earth processes. A first step toward bioaccumulation of methylmercury in aquatic food webs is the methylation of inorganic forms of the metal, a process that is primarily mediated by anaerobic bacteria. In this Review, we evaluate the current state of knowledge regarding the mechanisms regulating microbial mercury methylation, including the speciation of mercury in environments where methylation occurs and the processes that control mercury bioavailability to these organisms. Methylmercury production rates are generally related to the presence and productivity of methylating bacteria and also the uptake of inorganic mercury to these microorganisms. Our understanding of the mechanisms behind methylation is limited due to fundamental questions related to the geochemical forms of mercury that persist in anoxic settings, the mode of uptake by methylating bacteria, and the biochemical pathway by which these microorganisms produce and degrade methylmercury. In anoxic sediments and water, the geochemical forms of mercury (and subsequent bioavailability) are largely governed by reactions between Hg(II), inorganic sulfides, and natural organic matter. These interactions result in a mixture of dissolved, nanoparticulate, and larger crystalline particles that cannot be adequately represented by conventional chemical equilibrium models for Hg bioavailability. We discuss recent advances in nanogeochemistry and environmental microbiology that can provide new tools and unique perspectives to help us solve the question of how microorganisms methylate mercury. An understanding of the factors that cause the production and degradation of methylmercury in the environment is ultimately needed to inform policy makers and develop long-term strategies for controlling mercury contamination.
The development of carbon nanotube-(CNTs-)based gas sensors and sensor arrays has attracted intensive research interest in the last several years because of their potential for the selective and rapid detection of various gaseous species by novel nanostructures integrated in miniature and low-power consuming electronics. Chemiresistors and chemical field effect transistors are probably the most promising types of gas nanosensors. In these sensors, the electrical properties of nanostructures are dramatically changed when exposed to the target gas analytes. In this review, recent progress on the development of different types of CNT-based nanosensors is summarized. The focus was placed on the means used by various researchers to improve the sensing performance (sensitivity, selectivity and response time) through the rational functionalization of CNTs with different methods (covalent and non-covalent) and with different materials (polymers and metals).
We developed a simple and cost-effective fabrication technique to construct a hydrogen nanosensor by decorating single-walled carbon nanotubes with Pd nanoparticles. By varying the sensor's synthesis conditions (e.g., Pd electrodeposition charge, deposition potential, and initial baseline resistance of the SWNT network), the sensing performance was optimized. The optimized sensor showed excellent sensing properties toward hydrogen (ΔR/R of 0.42%/ppm) with a lower detection limit of 100 ppm and a linear response up to 1000 ppm. The response time decreased from tens of minutes to a few minutes with increasing hydrogen concentration at room temperature. The sensor's recovery time improved under humid air conditions compared to dry air conditions.
The production of the neurotoxic methylmercury in the environment is partly controlled by the bioavailability of inorganic divalent mercury (Hg(II)) to anaerobic bacteria that methylate Hg(II). In sediment porewater, Hg(II) associates with sulfides and natural organic matter to form chemical species that include organic-coated mercury sulfide nanoparticles as reaction intermediates of heterogeneous mineral precipitation. Here, we exposed two strains of sulfate-reducing bacteria to three forms of inorganic mercury: dissolved Hg and sulfide, nanoparticulate HgS, and microparticulate HgS. The bacteria cultures exposed to HgS nanoparticles methylated mercury at a rate slower than cultures exposed to dissolved forms of mercury. However, net methylmercury production in cultures exposed to nanoparticles was 6 times greater than in cultures treated with microscale particles, even when normalized to specific surface area. Furthermore, the methylation potential of HgS nanoparticles decreased with storage time of the nanoparticles in their original stock solution. In bacteria cultures amended with nano-HgS from a 16 h-old nanoparticle stock, 6-10% of total mercury was converted to methylmercury after one day. In contrast, 2-4% was methylated in cultures amended with nano-HgS that was aged for 3 days or 1 week. The methylation of mercury derived from nanoparticles (in contrast to the larger particles) would not be predicted by equilibrium speciation of mercury in the aqueous phase (<0.2 μm) and was possibly caused by the disordered structure of nanoparticles that facilitated release of chemically labile mercury species immediately adjacent to cell surfaces. Our results add new dimensions to the mechanistic understanding of mercury methylation potential by demonstrating that bioavailability is related to the geochemical intermediates of rate-limited mercury sulfide precipitation reactions. These findings could help explain observations that the "aging" of mercury in sediments reduces its methylation potential and provide a basis for assessing and remediating methylmercury hotspots in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.