Recent studies conclude that a new technique for tendon transfers, the side-to-side tenorrhaphy by Fridén (FR) provides higher biomechanical stability than the established standard first described by Pulvertaft (PT). The aim of this study was to optimize side-to-side tenorrhaphies. We compared PT and FR tenorrhaphies as well as a potential improvement, termed Woven-Fridén tenorrhaphy (WF), with regard to biomechanical stability. Our results demonstrate superior biomechanical stability and lower bulk of FR and, in particular, WF over PT tenorrhaphies. The WF and FR technnique therefore seem to be a notable alternative to the established standard tenorrhaphy as they display lower bulk and higher stability, permitting successful immediate active mobilization after surgery.
In tendon transfer surgeries sufficient stability of the tenorrhaphy is essential. In addition to the choice of a suitable technique, adequate overlap of donor and recipient tendons must be ensured. The aim of this study was to investigate the tensile strength with regard to tendon overlap of a recently published tenorrhaphy, termed Woven-Fridén (WF) tenorrhaphy, which displayed higher tensile strength and lower bulk when compared to the established Pulvertaft technique. For this purpose, WF tenorrhaphies with 1.5 cm, 2 cm, and 3 cm tendon overlap were performed and subsequently tested for different biomechanical properties by tensile testing. Among others, the parameters of ultimate load and stiffness were collected. Native tendons served as controls. A formula was derived to quantify the relation between tendon overlap and ultimate load. We observed that sufficient tensile strength (mean ultimate load of 217 N) is already given with a 2 cm tendon overlap. In addition, with more than 3 cm overlap length only little additional tensile strength is to be expected as the calculated ultimate load of 4 cm overlap (397 N) is approaching the plateau of the maximal ultimate load of 435 N (native tendons).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.