High density cDNA microarray screening was used to determine changes in gene expression occurring during the transition between the early luteal (prereceptive) and mid-luteal (receptive) phases in human endometrium. Of approximately 12,000 genes profiled, 693 (5.8%) displayed >2-fold differences in relative levels of expression between these stages. Of these, 370 genes (3.1%) displayed decreases ranging from 2- to >100-fold while 323 genes (2.7%) displayed increases ranging from 2- to >45-fold. Many genes correspond to mRNAs encoding proteins previously shown to change in a similar manner between the proliferative and mid-luteal phases, serving as one validation of the microarray screening results. In addition, novel genes were identified. Genes encoding cell surface receptors, adhesion and extracellular matrix proteins and growth factors accounted for 20% of the changes. Several genes were studied further by Northern blot analyses. These results confirmed that claudin-4/Clostridium perfringens enterotoxin (CPE) receptor and osteopontin (OPN) mRNA increased approximately 4- and 12-fold respectively, while betaig-H3 (BIGH3) decreased >80% during the early to mid-luteal transition. Immunostaining also revealed strong specific staining for claudin-4/CPE, EP(1) and prostaglandin receptor in epithelia, and leukotriene B4 receptor in both epithelia and stroma, at the mid-luteal stage. Collectively, these studies identify multiple new candidate markers that may be used to predict the receptive phase in humans. Some of these gene products, e.g. OPN, may play direct roles in embryo-uterine interactions during the implantation process.
Endometrium attains a secretory architecture in preparation for embryo implantation, but the identity of most endometrial secretory products remains unknown. Our objective was to characterize the endometrial secretome and compare protein expression between prereceptive (luteinizing hormone [LH]+4) receptive (LH+9) and phase endometrium. Endometrial lavage was performed in 11 participants and analyzed by difference gel electrophoresis (DIGE). LH+4 and LH+9 specimens were labeled with cyanine fluorescent dyes Cy3 and Cy5 tags, respectively, and combined. Proteins were separated using 2-dimensional gel electrophoresis, isolated, trypsin-digested, and subjected to mass spectrometry. In all, 152 proteins were identified; 82 were differentially expressed. Most proteins with increased expression on LH+9 functioned in host defense, while proteins with decreased expression had many functions. A total of 14 proteins had changes suggesting altered posttranslational modification. This article describes the first application of proteomic analysis to endometrial secretions, allowing identification of novel endometrial proteins as well as those differentially secreted in prereceptive and receptive phases.
Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen's importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis.
Histological endometrial dating does not reflect circulating P concentrations and cannot serve as a reliable bioassay of the quality of luteal function. Assessment of selected functional markers by either immunohistochemistry or qRT-PCR is similarly insensitive to decreased circulating P. Preliminary evidence suggests that abnormally low luteal phase serum P concentrations may have important functional consequences not otherwise detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.