BackgroundDNA methylation offers an excellent example for elucidating how epigenetic information affects gene expression. β values and M values are commonly used to quantify DNA methylation. Statistical methods applicable to DNA methylation data analysis span a number of approaches such as Wilcoxon rank sum test, t-test, Kolmogorov–Smirnov test, permutation test, empirical Bayes method, and bump hunting method. Nonetheless, selection of an optimal statistical method can be challenging when different methods generate inconsistent results from the same data set.ResultsWe compared six statistical approaches relevant to DNA methylation microarray analysis in terms of false discovery rate control, statistical power, and stability through simulation studies and real data examples. Observable differences were noticed between β values and M values only when methylation levels were correlated across CpG loci. For small sample size (n=3 or 6 in each group), both the empirical Bayes and bump hunting methods showed appropriate FDR control and the highest power when methylation levels across CpG loci were independent. Only the bump hunting method showed appropriate FDR control and the highest power when methylation levels across CpG sites were correlated. For medium (n=12 in each group) and large sample sizes (n=24 in each group), all methods compared had similar power, except for the permutation test whenever the proportion of differentially methylated loci was low. For all sample sizes, the bump hunting method had the lowest stability in terms of standard deviation of total discoveries whenever the proportion of differentially methylated loci was large. The apparent test power comparisons based on raw p-values from DNA methylation studies on ovarian cancer and rheumatoid arthritis provided results as consistent as those obtained in the simulation studies. Overall, these results provide guidance for optimal statistical methods selection under different scenarios.ConclusionsFor DNA methylation studies with small sample size, the bump hunting method and the empirical Bayes method are recommended when DNA methylation levels across CpG loci are independent, while only the bump hunting method is recommended when DNA methylation levels are correlated across CpG loci. All methods are acceptable for medium or large sample sizes.
An increasing number of low-and middle-income countries are receiving significant investments to implement health reform strategies featuring a health management information system (HMIS) as a fundamental eHealth intervention. We present the case of Morocco's first step toward the implementation of a national HMIS: the "urbanization" of its health information systems-an information architecture methodology designed to leverage existing capacity while ensuring sustainability of the new HMIS. We report on this process and share lessons learned, applicable to similar countries involved in HMIS interventions, including involving all stakeholders from inception to rollout, encouraging local ownership of the new HMIS, fostering active data usage among users, and leveraging existing personnel rotation policies when developing adoption strategies and facilitating capacity building efforts.
Microarrays are widely used for examining differential gene expression, identifying single nucleotide polymorphisms, and detecting methylation loci. Multiple testing methods in microarray data analysis aim at controlling both Type I and Type II error rates; however, real microarray data do not always fit their distribution assumptions. Smyth's ubiquitous parametric method, for example, inadequately accommodates violations of normality assumptions, resulting in inflated Type I error rates. The Significance Analysis of Microarrays, another widely used microarray data analysis method, is based on a permutation test and is robust to non-normally distributed data; however, the Significance Analysis of Microarrays method fold change criteria are problematic, and can critically alter the conclusion of a study, as a result of compositional changes of the control data set in the analysis. We propose a novel approach, combining resampling with empirical Bayes methods: the Resampling-based empirical Bayes Methods. This approach not only reduces false discovery rates for non-normally distributed microarray data, but it is also impervious to fold change threshold since no control data set selection is needed. Through simulation studies, sensitivities, specificities, total rejections, and false discovery rates are compared across the Smyth's parametric method, the Significance Analysis of Microarrays, and the Resampling-based empirical Bayes Methods. Differences in false discovery rates controls between each approach are illustrated through a preterm delivery methylation study. The results show that the Resampling-based empirical Bayes Methods offer significantly higher specificity and lower false discovery rates compared to Smyth's parametric method when data are not normally distributed. The Resampling-based empirical Bayes Methods also offers higher statistical power than the Significance Analysis of Microarrays method when the proportion of significantly differentially expressed genes is large for both normally and non-normally distributed data. Finally, the Resampling-based empirical Bayes Methods are generalizable to next generation sequencing RNA-seq data analysis.
Failure to address extreme environments constraints at the human-computer interaction level may lead to the commission of critical and potentially fatal errors. This experimental study addresses gaps in our current theoretical understanding of the impact of ±Gz accelerations and field dependency independency on task performance in human-computer interaction. It investigates the effects of ±Gz accelerations and field dependency independency on human performance in the completion of perceptual motor tasks on a personal digital assistant (PDA). We report the results of an experimental study, conducted in an aerobatic aircraft under multiple ±Gz conditions, showing that cognitive style significantly impacts latency and accuracy in target acquisition for perceptual motor tasks in altered ±Gz environments and propose design guidelines as countermeasures. Based on the results, we argue that developing design requirements taking into account cognitive differences in extreme environments will allow users to execute perceptual motor tasks efficiently without unnecessarily increasing cognitive load and the probability of critical errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.