In this study we assessed whether osteogenic cells respond in a differential manner to changes in surface roughness depending on their maturation state. Previous studies using MG63 osteoblast-like cells, hypothesized to be at a relatively immature maturation state, showed that proliferation was inhibited and differentiation (osteocalcin production) was stimulated by culture on titanium (Ti) surfaces of increasing roughness. At harvest, cell number, alkaline phosphatase-specific activity, and production of osteocalcin, transforming growth factor 1 (TGF-1) and prostaglandin E 2 (PGE 2 ) were measured. Cell behavior was sensitive to surface roughness and depended on the maturation state of the cell line. Fetal rat calvarial (FRC) cell number and alkaline phosphatase-specific activity were decreased, whereas production of osteocalcin, TGF-1, and PGE 2 were increased with increasing surface roughness. Addition of 1,25(OH) 2 D 3 to the cultures further augmented the effect of roughness for all parameters in a dose-dependent manner; only TGF-1 production on plastic and PT was unaffected by 1,25(OH) 2 D 3 . OCT-1 cell number and alkaline phosphatase (SLA > TPS) were decreased and production of PGE 2 , osteocalcin, and TGF-1 were increased on SLA and TPS. Response to 1,25(OH) 2 D 3 varied with the parameter being measured. Addition of the hormone to the cultures had no effect on
Prostaglandin E2 (PGE2) and transforming growth factor-beta 1 (TGF-beta 1) production are increased in cultures of osteoblasts grown on rough surfaces and prostaglandins are involved in osteoblast response to surface roughness. In the present study, we examined the effect of inhibiting cyclooxygenase on this response. MG63 osteoblast-like cells were cultured on cpTi disks with Ra values of 0.60 micron (PT), 3.97 microns (SLA), and 5.21 microns (TPS) in the presence or absence of 10(-7) M indomethacin. Treatment was begun on days 1, 2, 3, or 4 after seeding, and all cultures were harvested on day 5. Indomethacin decreased PGE2 release by the cells to less than 50% of basal levels when the cells were cultured on plastic. Cell number decreased with increasing surface roughness and indomethacin treatment abrogated the surface roughness effect over time. Alkaline phosphatase specific activity (ALP) increased with surface roughness; after one day with indomethacin, ALP was decreased on smooth surfaces, but increased on rough surfaces. Over time, ALP decreased on all surfaces examined and remained greater than plastic only in cultures on TPS. Indomethacin also caused a time-dependent decrease in osteocalcin production on rough surfaces, eventually abrogating the increases due to surface roughness, but had no effect on osteocalcin production on smooth surfaces. TGF-beta 1 levels in the cell layer and media were sensitive to surface roughness; on rougher surfaces, TGF-beta 1 shifted from the media to the matrix. Indomethacin reduced TGF-beta 1 levels over time, but the surface roughness effect was still evident at 4 days. This indicates that prostaglandin production mediates the effects of surface roughness, since indomethacin causes a time-dependent abrogation of the response, but has no effect on proliferation, osteocalcin release, or TGF-beta 1 levels on smooth surfaces. Indomethacin's effect was not immediate, suggesting that clinical protocols could be designed that would reduce inflammation without preventing osteoblastic differentiation. The effect of indomethacin was not complete, since TGF-beta 1 and ALP remained elevated on rough surfaces, suggesting that pathways or factors other than prostanoids are involved. TGF-beta 1 is preferentially stored in the matrix, acting on the cells through autocrine signaling, and may contribute to ALP even in the presence of indomethacin. These results demonstrate the importance of local factors in the autocrine regulation of osteogenesis and the potential for factors released in response to surface morphology to act in a paracrine manner.
Previous studies suggest that the enhanced expression of the osteoblastic phenotype exhibited by MG63 osteoblast-like cells on rough Ti surfaces (R(a) 4-5 microm) involves increased production of prostaglandin. Inhibition of prostaglandin synthesis by indomethacin blocks surface-roughness-dependent decreases in cell proliferation and increases in alkaline phosphatase activity and the production of osteocalcin and TGF-beta1. This study examined the hypothesis that the increase in expression of the osteoblastic phenotype noted in MG63 cells cultured on rough Ti surfaces is mediated by inducible cyclooxygenase-2 (Cox-2) whereas Cox-1 modulates prostaglandin production and phenotypic expression of the cells under standard conditions and on smooth Ti surfaces. MG63 cells were cultured on tissue culture plastic, smooth Ti (PT, R(a) = 0.60 microm), and two rough Ti surfaces with differing morphologies (SLA, R(a) = 3.97 microm and TPS, R(a) = 5.21 microm). At 24 h after plating, media were replaced with media containing the general Cox inhibitor indomethacin (10(-7)M), the Cox-1 inhibitor resveratrol (1 or 10 microM), or the Cox-2 inhibitor NS-398 (1 or 10 microM). Media were changed again after 48 h. Five days after plating, osteocalcin, PGE(2), and TGF-beta1 content of the conditioned media were determined. Cell numbers were assessed in the same cultures used for determination of osteocalcin production. Cell layer protein and alkaline phosphatase specific activity were assessed in cultures used to measure PGE(2) and TGF-beta1. Indomethacin, resveratrol, and NS-398 had no effect on cell number. Indomethacin blocked the surface-roughness-dependent increase in PGE(2) production by up to 80%. Similarly, resveratrol inhibited up to 50% of the PGE(2) production on smooth surfaces and up to 80% on rough surfaces. In contrast, NS-398 had no effect on PGE(2) production by cells on smooth surfaces but caused a 60% reduction in cultures on rough surfaces. Indomethacin reduced alkaline phosphatase on all surfaces below basal levels. However, neither resveratrol nor NS-398 had an effect. Indomethacin blocked the stimulatory effect of surface roughness on osteocalcin production while resveratrol only partially reduced osteocalcin production, and NS398 completely blocked the surface-dependent increase. TGF-beta1 production on rough surfaces was blocked by indomethacin. The effects of resveratrol and NS-398 were dose dependent, but neither agent caused total inhibition of the increase noted on SLA, and only resveratrol blocked the increase on TPS. These results indicate that both Cox-1 and Cox-2 are involved in the response of osteoblasts to surface roughness with respect to production of PGE(2), TGF-beta1, and osteocalcin. While prostaglandin mediates the effects of surface roughness on alkaline phosphatase, neither Cox-1 nor Cox-2 appears to be involved, at least with respect to the two inhibitors used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.