We present NodeXL, an extendible toolkit for network overview, discovery and exploration implemented as an add-in to the Microsoft Excel 2007 spreadsheet software. We demonstrate NodeXL data analysis and visualization features with a social media data sample drawn from an enterprise intranet social network. A sequence of NodeXL operations from data import to computation of network statistics and refinement of network visualization through sorting, filtering, and clustering functions is described. These operations reveal sociologically relevant differences in the patterns of interconnection among employee participants in the social media space. The tool and method can be broadly applied.
As users interact via social media spaces, like Twitter, they form connections that emerge into complex social network structures. These connections are indicators of content sharing, and network structures reflect patterns of information flow. This article proposes a conceptual and practical model for the classification of topical Twitter networks, based on their network-level structures. As current literature focuses on the classification of users to key positions, this study utilizes the overall network structures in order to classify Twitter conversation based on their patterns of information flow. Four network-level metrics, which have established as indicators of information flow characteristics—density, modularity, centralization, and the fraction of isolated users—are utilized in a three-step classification model. This process led us to suggest six structures of information flow: divided, unified, fragmented, clustered, in and out hub-and-spoke networks. We demonstrate the value of these network structures by segmenting 60 Twitter topical social media network datasets into these six distinct patterns of collective connections, illustrating how different topics of conversations exhibit different patterns of information flow. We discuss conceptual and practical implications for each structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.