SUMMARY
RNase III represents a family of dsRNA-specific endoribonucleases required for RNA maturation and gene regulation. The mechanism of action has been well characterized for the bacterial enzyme, but is not clear for eukaryotic RNase IIIs. Here, we describe the structure of Saccharomyces cerevisiae RNase III (Rnt1p) post-cleavage complex and explain the basis of its affinity for RNA stems capped with an NGNN tetraloop. The structure shows specific interactions between a new structural motif located at the end of Rnt1p dsRNA-binding domain (dsRBD) and the guanine nucleotide in the second position of the loop. Strikingly, structural and biochemical analyses indicate that the dsRBD and N-terminal domain function as two rulers measuring the distance between the tetraloop and the cleavage site. This unusual mechanism of substrate selectivity represents an example of the evolution of substrate selectivity and provides a framework for understanding the mechanism of action of eukaryotic RNase IIIs.
Members of the ribonuclease III (RNase III) family regulate gene expression by triggering the degradation of double stranded RNA (dsRNA). Hundreds of RNase III cleavage targets have been identified and their impact on RNA maturation and stability is now established. However, the mechanism defining substrates’ reactivity remains unclear. In this study, we developed a real-time FRET assay for the detection of dsRNA degradation by yeast RNase III (Rnt1p) and characterized the kinetic bottlenecks controlling the reactivity of different substrates. Surprisingly, the results indicate that Rnt1p cleavage reaction is not only limited by the rate of catalysis but can also depend on base-pairing of product termini. Cleavage products terminating with paired nucleotides, like the degradation signals found in coding mRNA sequence, were less reactive and more prone to inhibition than products having unpaired nucleotides found in non-coding RNA substrates. Mutational analysis of U5 snRNA and Mig2 mRNA confirms the pairing of the cleavage site as a major determinant for the difference between cleavage rates of coding and non-coding RNA. Together the data indicate that the base-pairing of Rnt1p substrates encodes reactivity determinants that permit both constitutive processing of non-coding RNA while limiting the rate of mRNA degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.