T he prevalence of obesity in the United States and the world has risen to epidemic/pandemic proportions. This increase has occurred despite great efforts by healthcare providers and consumers alike to improve the health-related behaviors of the population and a tremendous push from the scientific community to better understand the pathophysiology of obesity. This epidemic is all the more concerning given the clear association between excess adiposity and adverse health consequences such as cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). The risks associated with overweight/obesity are primarily related to the deposition of adipose tissue, which leads to excess adiposity or body fatness. Furthermore, weight loss, specifically loss of body fat, is associated with improvement in obesity-related comorbidities. Before weight loss interventions can be recommended, however, patients must be assessed for their adiposity-related risk. Unfortunately, healthcare providers and systems have not done a good job of assessing for excess adiposity even in its simplest form, such as measuring body mass index (BMI). It is for these reasons that we must emphasize the importance of assessing adiposity in clinical practices. Although it can be argued that the entire population should be targeted as an important public health issue with a goal of prevention of weight gain and obesity, there are currently so many "at risk" individuals that simple strategies to identify and treat those individuals are necessary. We must identify those individuals at highest risk of comorbidities in order to identify those who might benefit the most from aggressive weight management.This scientific statement will first briefly review the epidemiology of obesity and its related comorbidities, supporting the need for improved assessment of adiposity in daily clinical practice. This will be followed by a discussion of some of the challenges and issues associated with assessing adiposity and then by a review of the methods available for assessing adiposity in adults. Finally, practical recommendations for the clinician in practice will be given with a goal of identifying more at-risk overweight/obese individuals.
Aim To evaluate the effect of alirocumab on frequency of standard apheresis treatments [weekly or every 2 weeks (Q2W)] in heterozygous familial hypercholesterolaemia (HeFH). Methods and results ODYSSEY ESCAPE (NCT02326220) was a double-blind study in 62 HeFH patients undergoing regular weekly or Q2W lipoprotein apheresis. Patients were randomly assigned (2:1, respectively) to receive alirocumab 150 mg (n = 41) or placebo (n = 21) Q2W subcutaneously for 18 weeks. From day 1 to week 6, apheresis rate was fixed according to the patient’s established schedule; from weeks 7 to 18, apheresis rate was adjusted based on the patient’s low-density lipoprotein cholesterol (LDL-C) response in a blinded fashion. Apheresis was not performed when the LDL-C value was ≥30% lower than the baseline (pre-apheresis) value. The primary efficacy endpoint was the rate of apheresis treatments over 12 weeks (weeks 7–18), standardized to number of planned treatments. In the alirocumab group the least square (LS) mean ± SE (95% confidence interval [CI]) per cent change in pre-apheresis LDL-C from baseline at week 6 was −53.7 ± 2.3 (−58.2 to − 49.2) compared with 1.6 ± 3.1 (–4.7 to 7.9) in the placebo group. The primary efficacy endpoint showed statistically significant benefit in favour of alirocumab (Hodges–Lehmann median estimate of treatment difference: 0.75; 95% CI 0.67–0.83; P < 0.0001). Therefore, alirocumab-treated patients had a 0.75 (75%) additional reduction in the standardized rate of apheresis treatments vs. placebo-treated patients. During this period, 63.4% of patients on alirocumab avoided all and 92.7% avoided at least half of the apheresis treatments. Adverse event rates were similar (75.6% of patients on alirocumab vs. 76.2% on placebo). Conclusions Lipoprotein apheresis was discontinued in 63.4% of patients on alirocumab who were previously undergoing regular apheresis, and the rate was at least halved in 92.7% of patients. Alirocumab was generally safe and well tolerated.
BackgroundVisual presentation of food provides considerable information such as its potential for palatability and availability, both of which can impact eating behavior.MethodsWe investigated the subjective ratings for food appeal and desire to eat when exposed to food pictures in a fed sample (n = 129) using the computer paradigm ImageRate. Food appeal and desire to eat were analyzed for the effects of food group, portion size and energy density of the foods presented as well as by participant characteristics.ResultsFood appeal ratings were significantly higher than those for desire to eat (57.9 ± 11.6 v. 44.7 ± 18.0; p < 0.05). Body mass index was positively correlated to desire to eat (r = 0.20; p < 0.05), but not food appeal. Food category analyses revealed that fruit was the highest rated food category for both appeal and desire, followed by discretionary foods. Additionally, overweight individuals reported higher ratings of desire to eat large portions of food compared to smaller portions (p < 0.001), although these effects were relatively small. Energy density of the foods was inversely correlated with ratings for both appeal and desire (r's = - 0.27; p's < 0.01).ConclusionsResults support the hypothesis that individuals differentiate between food appeal and desire to eat foods when assessing these ratings using the same type of metric. Additionally, relations among food appeal and desire to eat ratings and body mass show overweight individuals could be more responsive to visual foods cues in a manner that contributes to obesity.
The task of maintaining energy balance involves not only making sure that the number of calories ingested equals the number of calories burned but also involves ensuring nutrient balance. This means that over time, the quantity of carbohydrate, fat and protein consumed equals the amount of each oxidized. While the body has the ability to convert protein to carbohydrate and carbohydrate to fat, over long periods of time the body establishes nutrient balance with a high degree of accuracy storing excess nutrients as fat. To make decisions about food intake, the brain must assimilate information about the quantity of nutrients ingested and their disposition through the body over time. This is a very complex time ordered process as different tissues may be in different states of energy balance at different intervals following food ingestion. The fundamental task for the brain is to assess the influx of nutrients relative to stored pools of those nutrients and the rate at which they are being oxidized. It has been suggested that this task is particularly difficult for dietary fat because the stored pool of lipid is quite large compared to either the stored pools of carbohydrate and protein or the quantity of fat ingested per day. It is clear that some organisms resist weight gain even in the face of highly palatable diets. In fact most individuals eat less on any given day than they could given their maximal capacity for consumption. A central question then is: what restrains food intake in the setting of widely available highly palatable food? In this paper we will discuss the evidence that the movement of dietary fat between tissues may play an important role in the fidelity of nutrient sensing and as a result, resistance or susceptibility to obesity. In particular, the relative metabolism of dietary fat favoring oxidation over storage may be associated with more robust signaling of positive energy balance and resistance to dietary induced obesity in both humans and rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.