International audienceSubduction of a narrow slab of oceanic lithosphere beneath a tightly curved orogenic arc requires the presence of at least one lithospheric scale tear fault. While the Calabrian subduction beneath southern Italy is considered to be the type example of this geodynamic setting, the geometry, kinematics and surface expression of the associated lateral, slab tear fault offshore eastern Sicily remain controversial. Results from a new marine geophysical survey conducted in the Ionian Sea, using high-resolution bathymetry and seismic profiling reveal active faulting at the seafloor within a 140 km long, two-branched fault system near Alfeo Seamount. The previously unidentified 60 km long NW trending North Alfeo Fault system shows primarily strike-slip kinematics as indicated by the morphology and steep-dipping transpressional and transtensional faults. Available earthquake focal mechanisms indicate dextral strike-slip motion along this fault segment. The 80 km long SSE trending South Alfeo fault system is expressed by one or two steeply dipping normal faults, bounding the western side of a 500+ m thick, 5 km wide, elongate, syntectonic Plio-Quaternary sedimentary basin. Both branches of the fault system are mechanically capable of generating magnitude 6–7 earthquakes like those that struck eastern Sicily in 1169, 1542, and 1693
Subduction of the Nazca plate beneath the Ecuador‐Colombia margin has produced four megathrust earthquakes during the last century. The 500‐km‐long rupture zone of the 1906 (Mw = 8.8) event was partially reactivated by three thrust events, in 1942 (Mw = 7.8), 1958 (Mw = 7.7), and 1979 (Mw = 8.2), whose rupture zones abut one another. Multichannel seismic reflection and bathymetric data acquired during the SISTEUR cruise show evidence that the margin wedge is segmented by transverse crustal faults that potentially correlate with the limits of the earthquake coseismic slip zones. The Paleogene‐Neogene Jama Quininde and Esmeraldas crustal faults define a ∼200‐km‐long margin crustal block that coincides with the 1942 earthquake rupture zone. Subduction of the buoyant Carnegie Ridge is inferred to partially lock the plate interface along central Ecuador. However, coseismic slip during the 1942 and 1906 earthquakes may have terminated against the subducted northern flank of the ridge. We report on a newly identified Manglares crustal fault that cuts transversally through the margin wedge and correlates with the limit between the 1958 and 1979 rupture zones. During the earthquake cycle the fault is associated with high‐stress concentration on the plate interface. An outer basement high, which bounds the margin seaward of the 1958 rupture zone, may act as a deformable buttress to seaward propagation of coseismic slip along a megathrust splay fault. Coseismic uplift of the basement high is interpreted as the cause for the 1958 tsunami. We propose a model of weak transverse faults which reduce coupling between adjacent margin segments, together with a splay fault and an asperity along the plate interface as controlling the seismogenic rupture of the 1958 earthquake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.