Manufacturing practices for recombinant adeno-associated viruses (AAV) have improved in the last decade through the development of new platforms in conjunction with better production and purification methods. In this review, we discuss the advantages and limitations of the most popular systems and methods employed with mammalian cell platforms. Methods and systems such as transient transfection, packaging and producer cells and adenovirus and herpes simplex virus are described. In terms of best production yields, they are comparable with about 10 -10 vector genomes produced per cell but transient transfection of HEK293 cells is by far the most commonly used. For small-scale productions, AAV can be directly purified from the producing cell lysate by ultracentrifugation on a CsCl or iodixanol-step gradient whereas large-scale purification requires a combination of multiple steps. Micro/macrofiltration (i.e. including tangential flow filtration and/or dead-end filtration) and chromatography based-methods are used for large-scale purification. Purified AAV products must then be quantified and characterized to ensure quality. Recent purification methods and current analytical techniques are reviewed here. Finally, AAV technology is very promising, but manufacturing improvements are still required to meet the needs of affordable, safe and effective AAV vectors essential for licensing of gene therapy clinical protocols.
Virus-like particles (VLPs) derived from retroviruses and lentiviruses can be used to deliver recombinant proteins without the fear of causing insertional mutagenesis to the host cell genome. In this study we evaluate the potential of an inducible lentiviral vector packaging cell line for VLP production. The Gag gene from HIV-1 was fused to a gene encoding a selected protein and it was transfected into the packaging cells. Three proteins served as model: the green fluorescent protein and two transcription factors-the cumate transactivator (cTA) of the inducible CR5 promoter and the human Krüppel-like factor 4 (KLF4). The sizes of the VLPs were 120-150 nm in diameter and they were resistant to freeze/thaw cycles. Protein delivery by the VLPs reached up to 100% efficacy in human cells and was well tolerated. Gag-cTA triggered up to 1100-fold gene activation of the reporter gene in comparison to the negative control. Protein engineering was required to detect Gag-KLF4 activity. Thus, insertion of the VP16 transactivation domain increased the activity of the VLPs by eightfold. An additional 2.4-fold enhancement was obtained by inserting nuclear export signal. In conclusion, our platform produced VLPs capable of efficient protein transfer, and it was shown that protein engineering can be used to improve the activity of the delivered proteins as well as VLP production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.