BCL2-associated athanogene (BAG)-3 is viewed as a platform that would physically and functionally link distinct classes of molecular chaperones of the heat shock protein (HSP) family for the stabilization and clearance of damaged proteins. In this study, we show that HSPB8, a member of the small heat shock protein subfamily, cooperates with BAG3 to coordinate the sequestration of harmful proteins and the cellular adaptive response upon proteasome inhibition. Silencing of HSPB8, like depletion of BAG3, inhibited targeting of ubiquitinated proteins to the juxtanuclear aggresome, a mammalian system of spatial quality control. However, aggresome targeting was restored in BAG3-depleted cells by a mutant BAG3 defective in HSPB8 binding, uncoupling HSPB8 function from its binding to BAG3. Depletion of HSPB8 impaired formation of ubiquitinated microaggregates in an early phase and interfered with accurate modifications of the stress sensor p62/sequestosome (SQSTM)-1. This impairment correlated with decreased coupling of BAG3 to p62/SQSTM1 in response to stress, hindering Kelch-like ECH-associated protein (KEAP)-1 sequestration and stabilization of nuclear factor E2-related factor (Nrf)-2, an important arm of the antioxidant defense. Notably, the myopathy-associated mutation of BAG3 (P209L), which lies within the HSPB8-binding motif, deregulated the association between BAG3 and p62/SQSTM1 and the KEAP1-Nrf2 signaling axis. Together, our findings support a so-far-unrecognized role for the HSPB8-BAG3 connection in mounting of an efficient stress response, which may be involved in BAG3-related human diseases.-Guilbert, S. M., Lambert, H., Rodrigue, M.-A., Fuchs, M., Landry, J., Lavoie, J. N. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.
The tumor cell–selective killing activity of the adenovirus type 2 early region 4 ORF4 (E4orf4) protein is poorly defined at the molecular level. Here, we show that the tumoricidal effect of E4orf4 is typified by changes in nuclear dynamics that depend on its interaction with the polarity protein Par3 and actomyosin contractility. Mechanistically, E4orf4 induced a high incidence of nuclear bleb formation and repetitive nuclear ruptures, which promoted nuclear efflux of E4orf4 and loss of nuclear integrity. This process was regulated by nucleocytoskeletal connections, Par3 clustering proximal to nuclear lamina folds, and retrograde movement of actin bundles that correlated with nuclear ruptures. Significantly, Par3 also regulated the incidence of spontaneous nuclear ruptures facilitated by the downmodulation of lamins. This work uncovered a novel role for Par3 in controlling the actin-dependent forces acting on the nuclear envelope to remodel nuclear shape, which might be a defining feature of tumor cells that is harnessed by E4orf4.
The cochaperone BCL2-associated athanogene 3 (BAG3), in complex with the heat shock protein HSPB8, facilitates mitotic rounding, spindle orientation, and proper abscission of daughter cells. BAG3 and HSPB8 mitotic functions implicate the sequestosome p62/SQSTM1, suggesting a role for protein quality control. However, the interplay between this chaperone-assisted pathway and the mitotic machinery is not known. Here, we show that BAG3 phosphorylation at the conserved T285 is regulated by CDK1 and activates its function in mitotic cell shape remodeling. BAG3 phosphorylation exhibited a high dynamic at mitotic entry and both a non-phosphorylatable BAG3T285A and a phosphomimetic BAG3T285D protein were unable to correct the mitotic defects in BAG3-depleted HeLa cells. We also demonstrate that BAG3 phosphorylation, HSPB8, and CDK1 activity modulate the molecular assembly of p62/SQSTM1 into mitotic bodies containing K63 polyubiquitinated chains. These findings suggest the existence of a mitotically regulated spatial quality control mechanism for the fidelity of cell shape remodeling in highly dividing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.