Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology – much of which are poorly understood – these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer’s, Parkinson’s, type 2 diabetes and prions diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and...
The fate of proteins with amyloidogenic properties depends critically on their immediate biochemical environment. However, the role of biological interfaces such as membrane surfaces, as promoters of pathological aggregation of amyloidogenic proteins, is rarely studied and only established for the amyloid-beta protein (A beta) involved in Alzheimer's disease, and alpha-synuclein in Parkinsonism. The occurrence of binding and misfolding of these proteins on membrane surfaces, is poorly understood, not at least due to the two-dimensional character of this event. Clearly, the nature of the folding pathway for A beta protein adsorbed upon two-dimensional aggregation templates, must be fundamentally different from the three-dimensional situation in solution. Here, we summarize the current research and focus on the function of membrane interfaces as aggregation templates for amyloidogenic proteins (and even prionic ones). One major aspect will be the relationship between membrane properties and protein association and the consequences for amyloidogenic products. The other focus will be on a general understanding of protein folding pathways on two-dimensional templates on a molecular level. Finally, we will demonstrate the potential importance of membrane-mediated aggregation for non-amphiphatic soluble amyloidogenic proteins, by using the SOD1 protein involved in the amyotrophic lateral sclerosis syndrome.
The membrane interactions of the antimicrobial peptide aurein 1.2 were studied using a range of biophysical techniques to determine the location and the mechanism of action in DMPC (dimyristoylphosphatidylcholine) and DMPC/DMPG (dimyristoylphosphatidylglycerol) model membranes that mimic characteristics of eukaryotic and prokaryotic membranes, respectively. Neutron reflectometry and solid-state NMR revealed subtle changes in membrane structure caused by the peptide. Quartz crystal microbalance with dissipation, vesicle dye leakage and atomic force microscopy measurements were used to investigate the global mode of peptide interaction. Aurein 1.2 displayed an enhanced interaction with the anionic DMPC/DMPG membrane while exhibiting primarily a surface interaction with both types of model membranes, which led to bilayer disruption and membrane lysis. The antimicrobial peptide interaction is consistent with the carpet mechanism for aurein 1.2 with discrete structural changes depending on the type of phospholipid membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.