To accelerate the discovery of novel small molecule central nervous system (CNS) positron emission tomography (PET) ligands, we aimed to define a property space that would facilitate ligand design and prioritization, thereby providing a higher probability of success for novel PET ligand development. Toward this end, we built a database consisting of 62 PET ligands that have successfully reached the clinic and 15 radioligands that failed in late-stage development as negative controls. A systematic analysis of these ligands identified a set of preferred parameters for physicochemical properties, brain permeability, and nonspecific binding (NSB). These preferred parameters have subsequently been applied to several programs and have led to the successful development of novel PET ligands with reduced resources and timelines. This strategy is illustrated here by the discovery of the novel phosphodiesterase 2A (PDE2A) PET ligand 4-(3-[(18)F]fluoroazetidin-1-yl)-7-methyl-5-{1-methyl-5-[4-(trifluoromethyl)phenyl]-1H-pyrazol-4-yl}imidazo[5,1-f][1,2,4]triazine, [(18)F]PF-05270430 (5).
A mechanistic study of the stoichiometric and catalytic H/D exchange reactions involving cationic iridium complexes is presented. Strong evidence suggests that both stoichiometric and catalytic reactions proceed via a monohydrido-iridium species. Stoichiometric deuterium incorporation reactions introduce multiple deuterium atoms into the organic products when aryliridium compounds CpPMe(3)Ir(C(6)H(4)X)(OTf) (X = H, o-CH(3), m-CH(3), p-CH(3)) react with D(2). Multiple deuteration occurs at the unhindered positions (para and meta) of toluene, when X = CH(3). The multiple-deuteration pathway is suppressed in the presence of an excess of the coordinating ligand, CH(3)CN. The compound CpPMe(3)IrH(OTf) (1-OTf) is observed in low-temperature, stoichiometric experiments to support a monohydrido-iridium intermediate that is responsible for catalyzing multiple deuteration in the stoichiometric system. When paired with acetone-d(6)(), [CpPMe(3)IrH(3)][OTf] (4) catalytically deuterates a wide range of substrates with a variety of functional groups. Catalyst 4 decomposes to [CpPMe(3)Ir(eta(3)-CH(2)C(OH)CH(2))][OTf] (19) in acetone and to [CpPMe(3)IrH(CO)][OTf] (1-CO) in CH(3)OH. The catalytic H/D exchange reaction is not catalyzed by simple H(+) transfer, but instead proceeds by a reversible C-H bond activation mechanism.
The diagnosis and staging of breast cancer could be improved by the development of imaging radiopharmaceuticals that provide a noninvasive determination of the estrogen receptor status in the tumor cells. Toward this goal, we have synthesized a number of novel Re-containing 7alpha-substituted estradiol complexes. The introduction of the 7alpha side chain involves the alkylation of tetrahydropyranyloxy-protected 6-keto estradiol. The methods used to introduce the rhenium metal involve "3 + 1" and "4 + 1" mixed ligand complexes (2a-c and 5, respectively), tricarbonyl dithioether complexes (3), and the cyclopentadienyltricarbonylmetal organometallic system (4ab, 6, 7). These complexes showed binding affinities for the estrogen receptor (as high as 45% for the "3 + 1" complex 2c) when compared to the native ligand estradiol. The polarity of some complexes (4ab) was modified to improve biodistribution properties by introducing (poly)ether linkages into the 7alpha side chain (6, 7). These complexes provide a further refinement of our understanding of ligand structure-binding affinity correlations for the estrogen receptor, and they furnish the synthetic groundwork for the synthesis of the analogous Tc-99m complexes for evaluation as breast tumor imaging agents.
A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.