Signalling circuits based on quorum sensing mechanisms have been popular tools for synthetic biology. Recent advances in our understanding of the analogous systems regulating antibiotics production in soil bacteria suggest that these might provide useful complementary tools to increase the complexity of possible circuit designs. Here we discuss the diversity of these natural circuits, which use γ-butyrolactones (GBLs) as their main inter-cellular signal, highlighting the range of new building blocks they could provide, as well as a number of exciting recent applications of GBL-based circuits in heterologous systems. We conclude by presenting examples of the novel circuit complexity that could become accessible through the use of GBL-based designs.
Chemically inducible transcription factors are widely used to control gene expression of synthetic devices. The bacterial quorum sensing system is a popular tool to achieve such control. However, different quorum sensing systems have been found to cross-talk, both between themselves and with the hosts of these devices, and they are leaky by nature. Here we evaluate the potential use of the γ-butyrolactone system from Streptomyces coelicolor A3(2) M145 as a complementary regulatory circuit. First, two additional genes responsible for the biosynthesis of γ-butyrolactones were identified in S. coelicolor M145 and then expressed in E. coli BL21 under various experimental conditions. Second, the γ-butyrolactone receptor ScbR was optimized for expression in E. coli BL21. Finally, signal and promoter crosstalk between the γ-butyrolactone system from S. coelicolor and quorum sensing systems from Vibrio fischeri and Pseudomonas aeruginosa was evaluated. The results show that the γ-butyrolactone system does not crosstalk with the quorum sensing systems and can be used to generate orthogonal synthetic circuits.
In Streptomyces, the onset of antibiotic production and sporulation is coordinated through small diffusible molecules known as γ-butyrolactones (GBLs). These are active in very low amounts, and their extraction and characterization are challenging. Here we describe a rapid, small-scale method for the extraction of GBL from Streptomyces coelicolor, from both solid and liquid cultures, which provides sufficient material for subsequent bioassays and partial characterization. We also present two different bioassay techniques for the detection and quantification of the GBL content in the extracts: the antibiotic bioassay and the kanamycin bioassay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.